The Blood-Brain Barrier in Diabetes Mellitus

  • M. Lorenzi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 274)


The blood-brain barrier (BBB) is the function whereby the cerebral microvas-culature selectively shields the brain from the rapidly changing milieu of the systemic circulation. Its strict anatomical counterpart is the tight junctions between capillary endothelial cells, but if the concept of barrier is broadened to mean not only partition and exclusion, but also exchanges and transport, then its morphologic counterpart becomes the whole endothelial cells, with its carrier molecules, membrane receptors, and biosynthetic repertory.


Growth Hormone Diabetic Retinopathy Growth Hormone Secretion Growth Hormone Response IDDM Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mooradian, A.D., Diabetic complications of the central nervous system, Endocrine Rev 9 346–356,1988.CrossRefGoogle Scholar
  2. 2.
    Ryan, C., A. Vega, and A. Drash, Cognitive deficits in adolescents who develop diabetes early in life, Pediatrics 75: 921–927, 1985.PubMedGoogle Scholar
  3. 3.
    Ternand, C., V.L.W. Go, J.E. Gerich, and M.W. Haymond, Endocrine pancreatic response of children with onset of insulin-requiring diabetes before age 3 and after age 5, J Pediatrics 101: 36–39, 1982.CrossRefGoogle Scholar
  4. 4.
    Perlmuter, L.C., M.K. Hakami, C. Hodgson-Harrington, J. Ginsberg, J. Katz, D.E. Singer, and D.M. Nathan, Decreased cognitive function in aging non-insulin-dependent diabetic patients, Am J Med 77: 1043–1048, 1984.PubMedCrossRefGoogle Scholar
  5. 5.
    Haumont, D., H. Dorchy, and S. Pelc, EEG abnormalities in diabetic children. Influence of hypoglycemia and vascular complications, Clin Pediatr 18: 750–753, 1979.CrossRefGoogle Scholar
  6. 6.
    Tsalikian, E., D.J. Becker, P.K. Crumrine, D. Daneman, and A. Drash, Electroencephalographic changes in diabetic ketosis in children with newly and previously diagnosed insulin-dependent diabetes mellitus, J Pediatr 98: 355–359, 1981.CrossRefGoogle Scholar
  7. 7.
    Morley, G.K., A.D. Mooradian, A.S. Levine, and J.E. Morley, Mechanism of pain in diabetic peripheral neuropathy. Effect of glucose on pain perception in humans, Am J Med 77: 79–82, 1984.PubMedCrossRefGoogle Scholar
  8. 8.
    Simon, G.S., and W.L. Dewey, Narcotics and diabetes. I. The effects of streptozotocin-induced diabetes on the antinociceptive potency of morphine, J Pharmacol Exper Ther 218: 318–323, 1981.Google Scholar
  9. 9.
    Simon, G.S., J. Borzelleca, and W.L. Dewey, Narcotics and diabetes. II. Streptozotocin-induced diabetes selectively alters the potency of certain narcotic analgesics. Mechanism of diabetes: morphine interaction, J Pharmacol Exper Ther 218: 324–329, 1981.Google Scholar
  10. 10.
    Bestetti, G., V. Locatelli, F. Tirone, G.L. Rossi, and E.E. Müller, One month of streptozotocin-diabetes induces different neuroendocrine and morphological alterations in the hypothalamo-pituitary axis of male and female rats, Endocrinology 117: 208–216, 1985.PubMedCrossRefGoogle Scholar
  11. 11.
    Bestetti, G.E., C.E. Boujon, M.J. Reymond, and G.L. Rossi, Functional and morphological changes in mediobasal hypothalamus of streptozotocin-induced diabetic rats, Diabetes 38: 471–476, 1989.PubMedCrossRefGoogle Scholar
  12. 12.
    Mooradian, A.D., J.E. Morley, C.J. Billington, M.F. Slag, M.K. Elson, and R.B. Shafer, Hyperprolac-tinemia in male diabetics, Postgrad Med J 61: 11–14, 1985.PubMedCrossRefGoogle Scholar
  13. 13.
    Lorenzi, M., J.H. Karam, M.B. Mcllroy, and P.H. Forsham, Increased growth hormone response to dopamine infusion in insulin-dependent diabetic subjects. Indication of possible blood-brain barrier abnormalities, J Clin Invest 65: 146–153, 1980.PubMedCrossRefGoogle Scholar
  14. 14.
    Lorenzi, M., E. Tsalikian, N.V. Bohannon, J.E. Gerich, J.H. Karam, and P.H. Forsham, Differential effects of L-Dopa and apomorphine on glucagon secretion in man: evidence against central dopaminergic stimulation of glucagon, J Clin Endocrinol Metab 45: 1154–1158, 1977.PubMedCrossRefGoogle Scholar
  15. 15.
    Gerich, J.E., Role of growth hormone in diabetes mellitus, N Engl J Med 310: 848–850, 1984.PubMedCrossRefGoogle Scholar
  16. 16.
    Johansen, K., and A.P. Hansen, Diurnal serum growth hormone levels in poorly and well-controlled juvenile diabetics, Diabetes 20: 239–245, 1971.PubMedGoogle Scholar
  17. 17.
    Zadik, Z., R. Kayne, M. Kappy, L.P. Plotnick, and A.A. Kowarski, Increased integrated concentration of norepinephrine, epinephrine, aldosterone, and growth hormone in patients with uncontrolled juvenile diabetes mellitus, Diabetes 29: 655–658, 1980.PubMedCrossRefGoogle Scholar
  18. 18.
    Drash, A., J.B. Field, L.Y. Garces, F.M. Kenny, D. Mintz, and A.M. Vazquez, Endogenous insulin and growth hormone response in children with newly diagnosed diabetes mellitus, Pediatr Res 2:94–102,1968.PubMedCrossRefGoogle Scholar
  19. 19.
    Burday, S.Z., P.H. Fine, and D.S. Schalch, Growth hormone secretion in response to arginine infusion in normal and diabetic subjects: relationship to blood glucose levels, J Lab Clin Med 71: 897–911, 1968.Google Scholar
  20. 20.
    Hansen, A.P., Abnormal serum growth hormone response to exercise in juvenile diabetics, J Clin Invest 49: 1467–1478. 1970.PubMedCrossRefGoogle Scholar
  21. 21.
    Dasmahapatra, A., E. Urdanivia, and M.P. Cohen, Growth hormone response to thyrotropin-releasing hormone in diabetes, J Clin Endocrinol Metab 52: 859–862, 1981.PubMedCrossRefGoogle Scholar
  22. 22.
    Ceda, G.P., G. Speroni, E. DalPAglio, G. Valenti, and U. Butturini, Nonspecific growth hormone responses to thyrotropin-releasing hormone in insulin-dependent diabetes: sex-and age-related pituitary responsiveness, J Clin Endocrinol Metab 55: 170–174, 1982.PubMedCrossRefGoogle Scholar
  23. 23.
    Winter, R.J., L.S. Phillips, M.N. Klein, H.S. Traisman, and O.C. Green, Somatomedin activity and diabetic control in children with insulin-dependent diabetes, Diabetes 28: 952–954, 1979.PubMedCrossRefGoogle Scholar
  24. 24.
    Yamashita, S., and S. Melmed, Effects of insulin on rat anterior pituitary cells. Inhibition of growth hormone secretion and mRNA levels, Diabetes 35: 440–447, 1986.PubMedCrossRefGoogle Scholar
  25. 25.
    Kannel, W.B., and D.L. McGee, Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study, Diabetes Care 2 120–126, 1979.Google Scholar
  26. 26.
    Rapoport, S.I. (ed), Blood-Brain Barrier in Physiology and Medicine ,Raven Press, New York, pp. 63 and 108, 1976.Google Scholar
  27. 27.
    Parving, H.H., Increased microvascular permeability to plasma proteins in short-and long-term juvenile diabetics, Diabetes [Suppl 2] 25: 884–889, 1976.Google Scholar
  28. 28.
    Palmberg, P.F., Diabetic retinopathy, Diabetes 26: 703–711, 1977.PubMedGoogle Scholar
  29. 29.
    Cunha-Vaz, J.G., J.R. Gray, R.C. Zeimer, M.C. Mota, B.M. Ishimoto, and E. Leite, Characterization of the early stages of diabetic retinopathy by vitreous fluorophotometry, Diabetes 34: 53–59, 1985.PubMedCrossRefGoogle Scholar
  30. 30.
    White, N.H., S.R. Waltman, T. Krupin, and J.V. Santiago, Reversal of abnormalities in ocular fluorophotometry in insulin-dependent diabetes after five to nine months of improved metabolic control, Diabetes 31: 80–85, 1982.PubMedCrossRefGoogle Scholar
  31. 31.
    Klein, R., R.L. Engerman, and J.T. Ernest, Fluorophotometry II. Streptozotocin-treated guinea pigs, Arch Ophthalmol 98: 2233–2234, 1980.PubMedCrossRefGoogle Scholar
  32. 32.
    Kirber, K.M., C.W. Nichols, P.A. Grimes, A.I. Winegrad, and A.M. Laties, A permeability defect of the retinal pigment epithelium. Occurrence in early streptozotocin diabetes, Arch Ophthalmol 98: 725–728, 1980.PubMedCrossRefGoogle Scholar
  33. 33.
    Tso, M.O.M., J.G. Cunha-Vaz, C.Y. Shih, and C.W. Jones, Clinicopathologic study of blood-retinal barrier in experimental diabetes mellitus, Arch Ophthalmol 98: 2032–2040, 1980.PubMedCrossRefGoogle Scholar
  34. 34.
    Wallow, I.H.L., and R.L. Engerman, Permeability and patency of retinal blood vessels in experimental diabetes, Invest Ophthalmol Vis Sci 16: 447–461, 1977.PubMedGoogle Scholar
  35. 35.
    Bloodworth, J.M.B., and D.L. Molitor, Ultrastructural aspects of human and canine diabetic retinopathy, Invest Ophthalmol Vis Sci 4: 1037–1048, 1965.Google Scholar
  36. 36.
    Jakobsen, J., L. Malmgren, and Y. Olsson, Permeability of the blood-nerve barrier in the strep-tozotocin-diabetic rat, Exper Neurol 60: 277–285, 1978.CrossRefGoogle Scholar
  37. 37.
    Malmgren, L.T., J. Jakobsen, and Y. Olsson, Permeability of blood-nerve barrier in galactose-fed rats, Exper Neurol 66: 758–770, 1979.CrossRefGoogle Scholar
  38. 38.
    Lorenzi, M., D.P. Healy, R. Hawkins, J.M. Printz, and M.P. Printz, Studies on the permeability of the blood-brain barrier in experimental diabetes, Diabetologia 29: 58–62, 1986.PubMedCrossRefGoogle Scholar
  39. 39.
    Stauber, W.T., S.H. Ong, R.S. McCuskey, Selective extravascular escape of albumin into the cerebral cortex of the diabetic rat, Diabetes 30: 500–503, 1981.PubMedCrossRefGoogle Scholar
  40. 40.
    Heistad, D.D., and M.L. Marcus, Effect of sympathetic stimulation on the permeability of the blood-brain barrier to albumin during acute hypertension in cats, Circ Res 45: 331–338, 1979.PubMedGoogle Scholar
  41. 41.
    Guthrow, C.E., MA. Morris, J.F. Day, S.R. Thorpe, and J.W. Baynes, Enhanced nonenzymatic glycosylation of human serum albumin in diabetes mellitus, Proc Natl Acad Sci USA 76: 4258–4261,1979.Google Scholar
  42. 42.
    Williams, S.K., J J. Devenny, and M.W. Bitensky, Micropinocytic ingestion of glycosylated albumin by isolated microvessels: possible role in pathogenesis of diabetic microangiopathy, Proc Natl Acad Sci USA 78: 2393–2397, 1981.PubMedCrossRefGoogle Scholar
  43. 43.
    Ennis, S.R., J.E. Johnson, and E.L. Pautler, In situ kinetics of glucose transport across the blood-retinal barrier in normal rats and rats with streptozotocin-induced diabetes, Invest Ophthalmol Vis Sci 23: 447–456, 1982.PubMedGoogle Scholar
  44. 44.
    Gjedde, A., and C. Crone, Blood-brain glucose transfer: repression in chronic hyperglycemia, Science 214: 456–457, 1981.CrossRefGoogle Scholar
  45. 45.
    McCall, A.L., W.R. Millington, and R.J. Wurtman, Metabolic fuel and aminoacid transport into the brain in experimental diabetes mellitus, Proc Natl Acad Sci USA 79: 5406–5410, 1982.PubMedCrossRefGoogle Scholar
  46. 46.
    Harik, S.I, J.C. LaManna, Vascular perfusion and blood-brain glucose transport in acute and chronic hyperglycemia, J Neurochem 51: 1924–1929, 1988.PubMedCrossRefGoogle Scholar
  47. 47.
    Brooks, D.J., J.S.R. Gibbs, P. Sharp, S. Herold, D.R. Turton, S.K. Luthra, E.M. Kohner, S.R. Bloom, and T. Jones, Regional cerebral glucose transport in insulin-dependent diabetic patients studied using [11C]3-0-methyl-D-glucose and positron emission tomography, JCereb Blood Flow Metab 6:240–244,1986.Google Scholar
  48. 48.
    Knudsen, G.M., J. Jakobsen, M. Juhler, and O.B. Paulson, Decreased blood-brain barrier permeability to sodium in early experimental diabetes, Diabetes 35: 1371–1373, 1986.PubMedCrossRefGoogle Scholar
  49. 49.
    Greene, DA., S.A. Lattimer, and A.A.F. Sima, Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications, N Engl J Med 316: 599–606, 1987.PubMedCrossRefGoogle Scholar
  50. 50.
    Østerby, R., Basement membrane morphology in diabetes mellitus In M. Ellenberg and H. Rifkin (eds) Diabetes Mellitus: Theory and Practice ,Medical Examination Publishing Company, New Hyde Park, NY, pp. 323–341, 1983.Google Scholar
  51. 51.
    Junker, U., C. Jaggi, G. Bestetti, and G.L. Rossi, Basement membrane of hypothalamus and cortex capillaries from normotensive and spontaneously hypertensive rats with streptozotocin-induced diabetes, Acta Neuropathol 65: 202–208, 1985.PubMedCrossRefGoogle Scholar
  52. 52.
    Johnson, P.C., K. Brendel, and E. Meezan, Thickened cerebral cortical capillary basement membranes in diabetes, Arch Pathol Lab Med 106: 214–217, 1982.PubMedGoogle Scholar
  53. 53.
    Cagliero, E., M. Maiello, D. Boeri, S. Roy, and M. Lorenzi, Increased expression of basement membrane components in human endothelial cells cultured in high glucose, J Clin Invest 82: 735–738, 1988.PubMedCrossRefGoogle Scholar
  54. 54.
    Vracko, R., R.E. Pecoraro, and W.B. Carter, Basal lamina of epidermis, muscle fibers, muscle capillaries, and renal tubules: changes with aging and in diabetes mellitus, Ultrastruct Pathol 1: 559–574, 1980.PubMedCrossRefGoogle Scholar
  55. 55.
    Tilton, R.G, A.M. Faller, J.K. Brukhardt, P.L. Hoffman, C. Kilo, and J.R. Williamson, Pericyte degeneration and acellular capillaries are increased in the feet of human diabetic patients, Diabetologia 28: 895–900, 1985.PubMedCrossRefGoogle Scholar
  56. 56.
    Bloodworth, J.M.B., A re-evaluation of diabetic glomerulo-sclerosis 50 years after the discovery of insulin, Human Pathol 9: 439–453, 1978.CrossRefGoogle Scholar
  57. 57.
    Ashton, N., Studies of the retinal capillaries in relation to diabetic and other retinopathies, Br J Ophthalmol 47: 521–538, 1963.PubMedCrossRefGoogle Scholar
  58. 58.
    De Oliveira, F., Pericytes in diabetic retinopathy, Br J Ophthalmol 50: 134–143, 1966.PubMedCrossRefGoogle Scholar
  59. 59.
    Addison, D.J., A. Garner, and N. Ashton, Degeneration of intramural pericytes in diabetic retinopathy, Br Med J 1: 264–266, 1970.PubMedCrossRefGoogle Scholar
  60. 60.
    Jakobsen, J., P. Sidenius, H.J.G. Gundersen, and R. Østerby, Quantitative changes of cerebral neocortical structure in insulin-treated long-term streptozotocin-induced diabetes in rats, Diabetes 36: 597–601,1987.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. Lorenzi
    • 1
  1. 1.Eye Research Institute and Departments of Ophthalmology and MedicineHarvard Medical SchoolBostonUSA

Personalised recommendations