Advertisement

The Physiology of the Blood-Brain Barrier

  • Barbro B. Johansson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 274)

Abstract

A strict regulation of the neuronal environment is essential for optimal brain function. The blood-brain barrier (BBB), a concept including the morphological and functional mechanisms that restricts or facilitates the passage of substances from blood to brain, enables the brain environment to be regulated relatively independently of fluctuations in plasma concentrations. Although disagreement prevails regarding some specific mechanisms, our knowledge of the BBB physiology has advanced impressively during the last decades (1–13).

Keywords

Brain Endothelial Cell Lipid Solubility Monocarboxylic Acid Brain Capillary Endothelial Cell Circumventricular Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rapoport, S.I. (ed), Blood-Brain Barrier in Physiology and Medicine ,Raven Press, New York, pp. 1–316, 1976.Google Scholar
  2. 2.
    Oldendorf, W.H., The blood-brain barrier, Exp Eye Res, Suppl 1977 177–190, 1977.CrossRefGoogle Scholar
  3. 3.
    Bradbury, M.W.B., The Concept of a Blood-Brain Barrier ,J. Wiley and Sons, New York, 1979.Google Scholar
  4. 4.
    Bradbury, M.W.B., The structure and function of the blood-brain barrier, Fed Proc 43 186–190, 1984.PubMedGoogle Scholar
  5. 5.
    Hardebo, J.E., and C. Owman, Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood-brain interfact, Ann Neurol 8 1–11, 1980.PubMedCrossRefGoogle Scholar
  6. 6.
    Crone, C, and D.G. Levitt, Capillary permeability to small solutes, In E.M. Renkin and C.C. Michel (eds) Handbook of Physiology, The Cardiovascular System, Volume 4, Section 2, The Microcirculation ,American Physiology Society, Bethesda, pp. 411–466, 1984.Google Scholar
  7. 7.
    Crone, C, The blood-brain barrier a modified tight epithelium, In M.W.B. Bradbury, M.G. Rumsby, and A.J. Suckling (eds) The Blood-Brain Barrier in Health and Disease ,Ellis Horwood Limited, Chichester, pp. 17–40, 1986.Google Scholar
  8. 8.
    Crone, C, The blood-brain barrier as a tight epithelium where is information lacking Ann NY Acad Sci 481 174–185, 1986.PubMedCrossRefGoogle Scholar
  9. 9.
    Pardridge, W.M., Brain metabolism a perspective from the blood-brain barrier, Physiol Rev 63 1481–1535, 1983.PubMedGoogle Scholar
  10. 10.
    Pardridge, W.M., Receptor-mediated peptide transport through the blood-brain barrier, Endocrine Rev 7 314–330, 1986.CrossRefGoogle Scholar
  11. 11.
    Goldstein, G.W., and A.L. Betz, The blood-brain barrier, Sci American 255 74–83, 1986.CrossRefGoogle Scholar
  12. 12.
    Cserr, H.F. (ed), In The Neuronal Microenvironment ,New York Academy of Science, New York, 1986.Google Scholar
  13. 13.
    Neuwelt, E A. (ed) In Implications of the Blood-Brain Barrier and Its Manipulation, Basic Science Aspects, Volume 1 ,Plenum Publishing Corporation, New York, 1989.Google Scholar
  14. 14.
    Davson, H., History of the blood-brain barrier concept, In E.A. Neuwelt (ed) Implications of the Blood-Brain Barrier and Its Manipulation, Volume 1, Basic Science Aspects ,Plenum Publishing Corporation, New York, pp. 27–52, 1989.CrossRefGoogle Scholar
  15. 15.
    Lewandowsky, M., Zur lehre der cerebrospinalflussigkeit, Z Klin Med 40 480–494, 1900.Google Scholar
  16. 16.
    Goldmann, E.E., Vitalfärbung am zentralnervsystem, Abh Preuss Akad Wiss Physmath 1 1–60, 1913.Google Scholar
  17. 17.
    Spatz, H., Die bedeutung der vitalen färbung für die lehre vom Stoffaustausch zwischen dem Zentralnervensystem und dem übrigen körper. Das morphologische substrat der stoffuechselschranken im zentralorgan, Arch f Psychiat 101 267–358, 1933.CrossRefGoogle Scholar
  18. 18.
    Broman, T., The permeability of cerebrospinal vessels in normal and pathological conditions, Munksgaard, Copenhagen, pp. 33–35, 1949.Google Scholar
  19. 19.
    Reese, T.S., and M.J. Karnovsky, Fine structural localization of a blood-brain barrier to exogenous peroxidase, J Cell Biol 34 207–217, 1967.PubMedCrossRefGoogle Scholar
  20. 20.
    Brightman, M.W., The anatomic basis of the blood-brain barrier, In Implications of the Blood-Brain Barrier and Its Manipulation, Volume 1, Basic Science Aspects ,Plenum Publishing Corporation, New York, pp. 53–83, 1989.CrossRefGoogle Scholar
  21. 21.
    Bundgaard, M., J. Frøkjaer-Jensen, and C. Crone, Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface, Proc Natl Acad Sci USA 76 6439–6442, 1979.PubMedCrossRefGoogle Scholar
  22. 22.
    Oldendorf, W.H., M.E. Cornform, and W.J. Brown, The large apparent work capability of the blood brain barrier a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat, Ann Neurol 1 409–417, 1977.PubMedCrossRefGoogle Scholar
  23. 23.
    Ferguson, R.K., and D.M. Woodbury, Penetration of 14C-inulin and 14C-sucrose into brain, cerebrospinal fluid, and skeletal muscle of developing rats, Exp Brain Res 7 181–194, 1969.PubMedCrossRefGoogle Scholar
  24. 24.
    deBault, L.E., and PA. Cancilla, γ-glutamyl transpeptidase in isolated brain endothelial cells induction by glial cells in vitro, Science 207 653–655, 1980.CrossRefGoogle Scholar
  25. 25.
    Janzer, R.C., and M.C. Raff, Astrocytes induce blood-brain barrier properties in endothelial cells, Nature 325 253–257, 1987.PubMedCrossRefGoogle Scholar
  26. 26.
    Beck, D.W, H.V. Vinters, M.N. Hart, and P.A. Cancilla, Glial cells influence polarity of the blood-brain barrier, J Neuropathol Exp Neurol 43 219–224, 1984.PubMedCrossRefGoogle Scholar
  27. 27.
    Krogh, A., The active and passive exchanges of inorganic ions through the surfaces of living cells and through living membranes generally, Proc Roy Soc B 133 140–200, 1946.CrossRefGoogle Scholar
  28. 28.
    Oldendorf, W.H., Lipid solubility and drug penetration of the blood brain barrier, Proc Soc Exp Biol Med 147 813–816, 1974.PubMedGoogle Scholar
  29. 29.
    Cefalu, W.T., and W.M. Pardridge, Restrictive transport of a lipid-soluble peptide (cyclosporin) through the blood-brain barrier, J Neurochem 45 1954–1956, 1985.PubMedCrossRefGoogle Scholar
  30. 30.
    Crone, C, and S.P. Olesen, Electrical resistance of brain microvascular endothelium, Brain Res 24149–55, 1982.PubMedCrossRefGoogle Scholar
  31. 31.
    Crone, C, Facilitated transfer of glucose from blood into brain tissue, J Physiol 181 103–113, 1965.PubMedGoogle Scholar
  32. 32.
    Oldendorf, W.H., Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection, Am J Physiol 221 1629–1639, 1971.PubMedGoogle Scholar
  33. 33.
    Oldendorf, W.H., and J. Szabo, Amino acid assignment to one of three blood-brain barrier amino acid carriers, Am J Physiol 230 94–98, 1976.PubMedGoogle Scholar
  34. 34.
    Pardridge, W.M., Neuropeptides and the blood-brain barrier, Ann Rev Physiol 45 73–82, 1983.CrossRefGoogle Scholar
  35. 35.
    Kalaria, R.N., S.A. Gravina, J.W. Schmidley, G. Perry, and S.I. Harik, The glucose transporter of the human brain and blood-brain barrier, Ann Neurol 24 757–764, 1988.PubMedCrossRefGoogle Scholar
  36. 36.
    deFronzo, R.A., R. Hendler, and N. Christensen, Stimulation of counterregulatory hormonal responses in diabetic man by a fall in glucose concentration, Diabetes 29 125–131, 1980.Google Scholar
  37. 37.
    Gjedde, A., and C. Crone, Induction processes in blood-brain transfer of ketone bodies during starvation, Am J Physiol 229 1165–1169, 1975.PubMedGoogle Scholar
  38. 38.
    McCall, A.L, W.R. Millington, and R.J. Wurtman, Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus, Proc Natl Acad Sci USA 79 5406–5410, 1982.PubMedCrossRefGoogle Scholar
  39. 39.
    Harik, S.I., S A. Gravina, and R.N. Kalaria, Glucose transporter of the blood-brain barrier and brain in chronic hyperglycemia, J Neurochem 51 1930–1934, 1988.PubMedCrossRefGoogle Scholar
  40. 40.
    Cremer, J.E., L.D. Braun, and W.H. Oldendorf, Changes during development in transport processes of the blood-brain barrier, Biochim Biophys Acta 448 633–637, 1976.PubMedCrossRefGoogle Scholar
  41. 41.
    Cremer, J.E., V J. Cunningham, W.M. Pardridge, L.D. Braun, and W.H. Oldendorf, Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats, J Neurochem 33 439–445, 1979.PubMedCrossRefGoogle Scholar
  42. 42.
    Moore, T.J., A.P. Lione, M.C. Sugden, and D.M. Regen, β-Hydroxybutyrate transport in rat brain, developmental and dietary modulation, Am J Physiol 230 619–630, 1976.PubMedGoogle Scholar
  43. 43.
    Cornford, E.M., L.D. Braun, and W.H. Oldendorf, Developmental modulations of blood-brain barrier permeability as an indicator of changing nutritional requirements in the brain, Pediatr Res 16 324–328, 1982.PubMedCrossRefGoogle Scholar
  44. 44.
    Ermisch, A., H.-J. Rühle, R. Landgraf, and J. Hess, Review blood-brain barrier and peptides, J Cereb Blood Flow Metab 5 350–357,1985.PubMedCrossRefGoogle Scholar
  45. 45.
    Banks, WA., and A.J. Kastin, Interactions between the blood-brain barrier and endogenous peptides emerging clinical implications, Am J Med Sci 295 459–465,1988.PubMedCrossRefGoogle Scholar
  46. 46.
    Banks, W.A., and A.J. Kastin, Exchange of peptides between the circulation and the nervous system role of the blood-brain barrier, In J.C. Porter and D. Ježová (eds) Circulating Regulatory Factors and Neuroendocrine Function ,Plenum Publishing Corporation, New York, pp. 59–69, 1990.Google Scholar
  47. 47.
    Ashcroft, G.W., R.C. Dow, and A.T.B. Moir, The active transport of 5-hydroxyindol-3-ylacetic acid and 3-methoxy-4-hydroxyphenylacetic acid from a recirculatory perfusion system of the cerebral ventricles of the unanaesthetized dog, J Physiol 199 397–425, 1968.PubMedGoogle Scholar
  48. 48.
    Smith, Q.R., and S.I. Rapoport, Carrier-mediated transport of chloride across the blood-brain barrier, J Neurochem 42 754–763, 1984.PubMedCrossRefGoogle Scholar
  49. 49.
    Bradbury, M.W.B., and B. Stulcová, Efflux mechanism contributing to the stability of the potassium concentration in cerebrospinal fluid, J Physiol 208 415–430, 1970.PubMedGoogle Scholar
  50. 50.
    Smith, Q.R., and S.I. Rapoport, Cerebrovascular permeability coefficients to sodium, potassium and chloride, J Neurochem 46 1732–1742, 1986.PubMedCrossRefGoogle Scholar
  51. 51.
    Betz, A.L., Transport of ions across the blood-brain barrier, Fed Proc 45 2050–2054, 1986.PubMedGoogle Scholar
  52. 52.
    Betz, A.L., JA. Firth, and G.W. Goldstein, Polarity of the blood-brain barrier distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells, Brain Res 19217–28, 1980.PubMedCrossRefGoogle Scholar
  53. 53.
    Bertler, A., B. Falck, C.H. Owman, and E.B. Rosengrenn, The localization of monoaminergic blood-brain barrier mechanisms, Pharmacol Rev 18 369–385, 1966.PubMedGoogle Scholar
  54. Hardebo, J.E., and C. Owman, Enzymatic mechanisms for neurotransmitter monoamines and their precursors at the blood-brain interface, In B.B. Johansson, C. Owman, and H. Widner (eds) Pathophysiology of the Blood-Brain Barrier and Peptides, The Femström Symposium ,Series 14, Elsevier, Amsterdam, In PressGoogle Scholar
  55. 55.
    Owman, C., and J.E. Hardebo (eds) In (eds), Neural Regulation of Brain Circulation ,Elsevier, Amsterdam, 1986.Google Scholar
  56. 56.
    Hartman, B., The innervation of cerebral blood vessels by central noradrenergic neurons, In E. Usdin and S.H. Snyder (eds) Frontiers in Catecholamine Research ,Pergamon Press, New York, pp. 91–96,1973.Google Scholar
  57. 57.
    Raichle, M.E., B.K. Hartman, J.O. Eichling, and L.G. Sharpe, Central noradrenergic regulation of cerebral blood flow and vascular permeability, Proc Natl Acad Sci USA 72 3726–3730, 1975.PubMedCrossRefGoogle Scholar
  58. 58.
    Johanson, C.E., Ontogeny and Phylogeny of the blood-brain barrier, In E. A. Neuwelt (ed) Implications of the Blood-Brain Barrier and Its Manipulation, Volume 1, Basic Science Aspects ,Plenum Publishing Corporation, New York, pp. 157–198, 1989.CrossRefGoogle Scholar
  59. 59.
    Johansson, B.B., and L. Martinsson, The blood-brain barrier in adrenaline-induced hypertension, Circadian variations and modification by beta-adrenoreceptor antagonists, Acta Neurol Scan 62 96–102, 1980.CrossRefGoogle Scholar
  60. 60.
    Johansson, B.B., and O. Isaksson, Circadial variation of cerebral vessel vulnerability during adrenaline-induced hypertension, In D.D. Heistad and M.L. Marcus (eds) Cerebral Blood Flow Effect of Nerves and Neurotransmitters ,Elsevier Biomedical, Amsterdam, pp. 367–375, 1982.Google Scholar
  61. 61.
    Johansson, B.B., Effect of an acute increase of the intravascular pressure on the blood-brain barrier. A comparison between conscious and anesthetized rats, Stroke 9 588–590, 1978.PubMedCrossRefGoogle Scholar
  62. 62.
    Johansson, B.B., Pharmacological modification of hypertensive blood-brain barrier opening, Acta Pharmacol Toxicol 48 242–247, 1981.CrossRefGoogle Scholar
  63. 63.
    Wekerle, H., C. Linington, H. Lassmann, and N.R. Meyerman, Cellular immune reactivity within the CNS, Trends Neurosci 9 271–277, 1986.CrossRefGoogle Scholar
  64. 64.
    Bradbury, M.W.B., and R J. Westrop, Lymphatics and the drainage of cerebrospinal fluid, In K. Shapiro, A. Marmarou, and H. Portnoy (eds) Hydrocephalus ,Raven Press, New York, pp. 69–81, 1984.Google Scholar
  65. 65.
    Widner, H., B.-A. Jönsson, L. Hallstadius, K. Wingärdh, S.-E. Strand, and B.B. Johansson, Scintigraphic method to quantify the passage from brain parenchyma to the deep cervical lymph nodes in rat, Eur J NuclMed 13 456–461, 1987.PubMedCrossRefGoogle Scholar
  66. 66.
    Widner H., G. Möller, and B.B. Johansson, Immune response in deep cervical lymph nodes and spleen in the mouse after antigen deposition in different intracerebral sites, Scan J Immunol 28 563–571,1988.CrossRefGoogle Scholar
  67. 67.
    Widner, H., and P. Brundin, Immunological aspects of grafting in the mammalian central nervous system. A review and speculative synthesis, Brain Res Rev 13 287–324, 1988.CrossRefGoogle Scholar
  68. 68.
    Krisch, B., H. Leonhardt, and W. Buchheim, The functional and structural border between the CSF-and blood-milieu in the circumventricular organs (organum vasculosum laminae terminalis subfornical organ, area postrema) of the rat, Cell Tissue Res 195 485–497, 1978.PubMedGoogle Scholar
  69. 69.
    Bigotte, L., and Y. Olsson, Cytofluorescence localization of adriamycin in the nervous system III. Distribution of drug in the brain of normal adult mice after intraventricular and arachnoidal injections, Acta Neuropathol [Berl] 58 193–202, 1982.CrossRefGoogle Scholar
  70. 70.
    Houthoff, HJ., R.C. Moretz, H.G. Rennke, and H.M. Wisniewski, The role of molecular charge in the extravasation and clearance of protein tracers blood-brain barrier impairment and cerebral edema, In K.G. Go and A. Baethmann (eds) Recent Progress in the Study and Therapy of Brain Edema ,Plenum Publishing Corporation, New York, pp. 67–79, 1984.Google Scholar
  71. 71.
    Chan, P.H., S. Longar, and R.A. Fishman, Protective effects of liposome-entrapped superoxide dismutase on post traumatic brain edema, Ann Neurol 21 540–547, 1987.PubMedCrossRefGoogle Scholar
  72. Fishman, R.A., and P.H. Chan, Liposome entrapment of drugs and enzymes to enable passage across the blood-brain barrier, In B.B. Johansson, C. Owman, and H. Widner (eds) The Pathophysiology of the Blood-Brain Barrier. Long Term Consequences for the Brain, The Fernström Symposium, Series 14 ,Elsevier, Amsterdam, In Press.Google Scholar
  73. 73.
    Pardridge, W.M., A.K. Kumagai, and J.B. Eisenberg, Chimeric peptides as a vehicle for peptide pharmaceutical delivery through the blood-brain barrier, Biochem Biophys Res Commun 146 307–313, 1987.PubMedCrossRefGoogle Scholar
  74. 74.
    Olesen, S.-P., A calcium-dependent reversible permeability increase in microvessels in frog brain, induced by serotonin, J Physiol 361 103–113, 1985.PubMedGoogle Scholar
  75. 75.
    Olesen, S.-P, Free oxygen radicals decrease electrical resistance of microvascular endothelium in brain, Acta Physiol [Scand] 129 181–187, 1987.CrossRefGoogle Scholar
  76. 76.
    Olesen, S.-P., and C. Crone, Substances that rapidly augment ionic conductance of endothelium in cerebral venules, Acta Physiol [Scand] 127 233–241, 1986.CrossRefGoogle Scholar
  77. 77.
    Johansson, B., C.-L. Li, Y. Olsson, and I. Klatzo, The effect of acute arterial hypertension on the blood-brain barrier to protein tracers, Acta Neuropathol [Berl] 16 117–124, 1970.CrossRefGoogle Scholar
  78. 78.
    Johansson, B.B., Hypertension and the blood-brain barrier, In E. A. Neuwelt (ed) Implications of the Blood-Brain Barrier and Its Manipulation, Volume 2, Clinical Aspects ,Plenum Publishing Corporation, New York, pp. 389–410, 1989.Google Scholar
  79. 79.
    Rapoport, S.I., Osmotic opening of the blood-brain barrier, Ann Neurol 24 677–680, 1988.PubMedCrossRefGoogle Scholar
  80. 80.
    Neuwelt, E. A., and S. A. Dahlborg, Chemotherapy administered in conjunction with osmotic blood-brain barrier modification in patients with brain metastases, J Neurooncol 4 195–207, 1987.PubMedCrossRefGoogle Scholar
  81. 81.
    Nagy, Z., H. Peters, and I. Huttner, Charge-related alterations of the cerebral endothelium, Lab Invest 49 662–671, 1983.PubMedGoogle Scholar
  82. 82.
    Ježvá, D., B.B. Johansson, Z. Opršalová, and M. Vigaš, Changes in blood-brain barrier function modify the neuroendocrine response to circulating substances, Neuroendocrinology 49 428–433, 1989.CrossRefGoogle Scholar
  83. Westergren, I., and B.B. Johansson, Albumin content in brain and CSF after intracarotid infusion of protamine sulphate. A longitudinal study, Exp Neurol ,In Press.Google Scholar
  84. 84.
    Sokrab, T.-E.O., B.B. Johansson, H. Kalimo, and Y. Olsson, A transient hypertensive opening of the blood-brain barrier can lead to brain damage, Aca Neurpathol [Berl] 75 557–565, 1988.CrossRefGoogle Scholar
  85. 85.
    Salahuddin, T.S., B.B. Johansson, H. Kalimo, and Y. Olsson, Structural changes in the rat brain after carotid infusions of hyperosmolar solutions. An electron microscopic study, Acta Neuropathol 11 5–13, 1988.CrossRefGoogle Scholar
  86. 86.
    Fishman, RA., Is there a therapeutic role or osmotic breaching of the blood-brain barrier (editorial), Ann Neurol 22 298–299, 1987.PubMedCrossRefGoogle Scholar
  87. Johansson, B.B., C. Owman, and H. Widner (eds), The Pathophysiology fo the Blood-Brain Barrier. Long Term Consequences for the Brain, The Fernström Symposium, Series 14 ,Elsevier, Amsterdam, In Press.Google Scholar
  88. 88.
    Bigotte, L., B. Arvidson, and Y. Olsson, Cytofluorescence localization of adriamycin in the nervous system I. Distribution of the drug in the central nervous system of normal adult mice after intravenous injection, Acta Neuropathol [Berl] 57 121–129, 1982.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Barbro B. Johansson
    • 1
  1. 1.Department of NeurologyLund UniversityLundSweden

Personalised recommendations