Neuroendocrinology of Interleukin-1

  • Frank Berkenbosch
  • Roel de Rijk
  • Adriana Del Rey
  • Hugo Besedovsky
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 274)


Inflammatory processes and infectious diseases induce a constellation of host responses referred to as acute phase response (1,2). These responses include changes in immunologic, metabolic, neurologic, and endocrinologic functions. Although many of its components are far from being understood, it is generally believed that the acute phase response serves to regain normal homeostasis.


Newcastle Disease Virus Corticotropin Release Factor Acute Phase Response Median Eminence Anterior Pituitary Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dinarello, C.A., Interleukin–1 and the pathogenesis of the acute phase response, New Eng J Med 311: 1413–1418, 1984.PubMedCrossRefGoogle Scholar
  2. 2.
    Frayn, K.N. Hormonal control of metabolism in trauma and sepsis,Clin Endocrinol 24: 577–599, 1986.CrossRefGoogle Scholar
  3. 3.
    Oppenheim, J .J., E.J. Kovács, K. Matsushima, and S.K. Durum, There is more than one interleukin–1, Immunol Today 7: 45–56, 1986.CrossRefGoogle Scholar
  4. 4.
    Lomedico, P.T., U. Gubler, C.P. Hellman, M. Dukovich, J.C. Giri, Y.C.E. Pan, K. Collier, R. Semionow, A.O. Chua, and S.B. Mizel, Cloning and expression of murine interleukin–1 cDNA in Eschericia Coli, Nature 312: 458–462, 1984.PubMedCrossRefGoogle Scholar
  5. 5.
    March, C.J., B. Mosley, A. Larsen, D.P. Ceretti, G. Breadt, V. Price, S. Gillis, C.S. Henney, S.R. Knonheim, K. Grabstein, P.J. Conlon, T.P. Hopp, and D. Kosman, Cloning, sequence and expression of two distinct human interleukin–1 complementary DNAs, Nature 315: 641–647, 1985.PubMedCrossRefGoogle Scholar
  6. 6.
    Nishida, T., N. Nishino, K. Mizuno, Y. Sekiguch, M. Takano, K. Kawai, S. Nakai, and Y. Hirai, Cloning of the Cdnas for rat interleukin–1 alpha and beta, In Monokines and Other Non–Lymphocytic Cytokines ,A.R. Liss, New York, pp.73–78, 1988.Google Scholar
  7. 7.
    Bird, T.A., and J. Saklatvala, Identification of a common class of high affinity receptors for both types of porcine interleukin–1 on connective tissue cells, Nature 324: 263–266, 1986.PubMedCrossRefGoogle Scholar
  8. 8.
    Dower, S.K., S.M. Call, S. Gillis, and D.L. Urdal, Similarity between the interleukin–1 receptor on a murine T–lymphoma cell line and on a murine fibroblast cell line, Proc Natl Acad Sci USA 83:1060–1064, 1986.PubMedCrossRefGoogle Scholar
  9. 9.
    Dower, S.K., S.R. Krohnheim, T.P. Hopp, M. Cantrell, M. Deeley, S. Gillis, C.S. Henney, and D.L. Urdal, The cell surface receptors for interleukin–land interleukin–1are identical, Nature 324: 266–268, 1986.PubMedCrossRefGoogle Scholar
  10. 10.
    Kilian, P.L., K.L. Kaffka, A.S. Stein, D. Woehle, W.R. Benjamin, T.M. Decheria, U. Gabler, J .J. Farrar, S.B. Mizel, and P.T. Lomedico, Interleukin–1 alpha and interleukin–1 beta bind to the same receptor on T–cells, J Immunol 136: 4509–4514, 1986.PubMedGoogle Scholar
  11. 11.
    Sims, J.E., C.J. March, D. Cosman, M.B. Widmer, R.H. MacDonald, C.J. McMahan, C.E. Grubin, J.M. Wignall, J.L. Jackson, S.M. Call, D. Frien, A.R. Alpert, S. Gillis, D.L. Urdal, and S.K. Dower, cDNA expression cloning of the interleukin–1 receptor, a member of the immunoglobulin superfamily, Science 241: 585–589, 1988.PubMedCrossRefGoogle Scholar
  12. 12.
    Dinarello, C.A., Biology of interleukin–1, FASEB 2: 108–115, 1988.Google Scholar
  13. 13.
    Fontana, A., F. Kristensen, R. Dubi, D. Gemsa, and E. Weber, Production of prostaglandin E and an interleukin–1 like factor by cultured astrocytes and C6 glioma cells, J Immunol 129: 2413–2419, 1982.PubMedGoogle Scholar
  14. 14.
    Fontana, A., E. Weber, and J.M. Dayer, Synthesis of interleukin–1/endogenous pyrogen in the brain of endotoxin–related mice: a step in fever induction, J Immunol 133: 1696–1698, 1984.PubMedGoogle Scholar
  15. 15.
    Giulian, D., T.J. Baker, L–C.N. Shih, and L.B. Lachman, Interleukin–1 of the central nervous system is produced by ameloid microglia, J Exp Med 164: 594–604, 1986.PubMedCrossRefGoogle Scholar
  16. 16.
    Besedovsky, H., A Del Rey, E. Sorkin, and C.A. Dinarello, Immunoregulatory feedback between interleukin–1 and glucocorticoid hormones, Science 233: 652–654, 1986.PubMedCrossRefGoogle Scholar
  17. 17.
    Urquhart, J., Physiological actions of adrenocorticotropic hormone, In S.R. Geiger (ed) Handbook of Physiology, Endocrinology ,American Physiological Society, Washington, D.C., pp. 133, 1974.Google Scholar
  18. 18.
    DeWied, D., Pituitary–adrenal system hormones and behaviour, In F.O. Schmitt and F.G. Worden (eds) The Neurosciences ,MIT Press, Cambridge, pp. 653, 1974.Google Scholar
  19. 19.
    Munck, A., P.M. Guyre, and N.J. Holbrook, Physiological functions of glucocorticoids in stress and their relation to pharmacological actions, Endocrine Rev 5: 25–44, 1984.CrossRefGoogle Scholar
  20. 20.
    Bateman,A., A. Singh, T. Kral, and S. Solomon, The immune–hypothalamic pituitary–adrenal axis, Endocrine Rev 10: 92–112, 1989.CrossRefGoogle Scholar
  21. 21.
    Beisel, W.R. and M.I. Rapoport, Interrelations between adrenocortical functions and infectious illness, N Engl J Med 280: 541–546, 1969.CrossRefGoogle Scholar
  22. 22.
    Smith, E.M., W.J. Meyer, and J.E. Blalock, Virus induced corticosterone in hypophysectomized mice: a possible lymphoid–adrenal axis, Science 218: 1311–1312, 1982.PubMedCrossRefGoogle Scholar
  23. 23.
    Nakano, K., S. Suzuki, and C. Oh, Significance of increased secretion of glucocorticoids in mice and rats injected with bacterial endotoxin, Brain Behav Immun 1: 159–172, 1987.PubMedCrossRefGoogle Scholar
  24. 25.
    Wolf, S.M., Biological effects of bacterial endotoxin in man, J Infect Dis 128: S259–S264, 1974.CrossRefGoogle Scholar
  25. 26.
    Lachman, L.B., Interleukin–1 release from LPS–stimulated mononuclear phagocytes, In A. Nowotny (ed) Beneficial Effect of Endotoxin ,Plenum Press, New York, pp. 283, 1983.Google Scholar
  26. 27.
    Okusawa, S., C.A. Dinarello, K.B. Yancey, S. Endies, T.J. Lawley, M.M Frank, J.F. Burke, and JA. Gelfand, G5a induction of human interleukin–1: synergistic effects with endotoxin or interferon–gamma, J Immunol 139: 2635–2640, 1987.PubMedGoogle Scholar
  27. 28.
    Dunn, A. J., and M.L. Powell, Virus–induced increases in plasma corticosterone, Science 238:1423–1424, 1987.PubMedCrossRefGoogle Scholar
  28. 29.
    Berkenbosch, F., A. Del Rey, J.W.A. Van Oers, F.J.H. Tilders, and H. Besedovsky, Feedback circuit involving the immuno–hormone interleukin–1 and the pituitary–adrenal system, In R. Kvetnansky and G. Van Loon (eds) Catecholamines and Other Neurotransmitters in Stress ,Gordon and Breach, New York, In Press, 1989.Google Scholar
  29. 30.
    Besedovsky, H.O., E. Sorkin, M. Keller, and J. Muller, Changes in blood hormone levels during the immune response, Proc Soc Exp Med 150: 466–470, 1975.Google Scholar
  30. 31.
    Besedovsky, H., A. Del Rey, E. Sorkin, W. Lotz, and U. Schuwela, Lymphoid cells produce an immunoregulatory glucocorticoid increasing factor (GIF) acting through the pituitary gland, Clin Exp Immunol 59: 622–628, 1985.PubMedGoogle Scholar
  31. 32.
    Harbour–McMenemamin, D., E.M. Smith, and J.E. Blalock, Bacteria lipopolysaccharide induction of leukocyte–derived corticotropin and endorphins, Infect Immunol 48: 813–817, 1985.Google Scholar
  32. 33.
    Smith, E. K., and E.J. Blalock, Human lymphocyte production of corticotropin and endorphin like substances: association with leukocyte interferon, Proc Natl Acad Sci USA 78: 7530–7534, 1981.PubMedCrossRefGoogle Scholar
  33. 34.
    Kavelaars, A., R.E. Ballieux, and C.J. Heijnen, The role of IL–1 in the corticotropin releasing factor and arginine–vasopressin induced secretion of immunoreactive beta–endorphin by human peripheral blood mononuclear cells, J Immunol ,In Press, 1989.Google Scholar
  34. 35.
    Besedovsky, H., and A. Del Rey, Neuroendocrine and metabolic responses induced by interleukin–1, J Neurosci Res 18: 172–178, 1987.PubMedCrossRefGoogle Scholar
  35. 36.
    Bendtzen, K., T. Mandrup–Poulson, J. Nerup, J.H. Nielsen, C.A. Dinarello, and M. Svenson, Cytoxicity of human pI 7 interleukin–1 for pancreatic islets of langerhans, Science 232: 1545–1547, 1986.PubMedCrossRefGoogle Scholar
  36. 37.
    Ferreira, S.H., B.B. Lorenzetti, A.F. Bristow, and S. Poole, Interleukin–beta as a potent hyperalgesic agent antagonized by a tripeptide analogue, Nature 334: 698–703, 1988.PubMedCrossRefGoogle Scholar
  37. 38.
    Katsuura, G., P.E. Gottschall, R.R. Dahl, and A. Arimura, Adrenocorticotropin release induced by intracerebroventricular injection of recombinant interleukin–1 in rats: possible involvement of prostaglandins, Endocrinology 122: 1773–1779, 1988.PubMedCrossRefGoogle Scholar
  38. 39.
    Naitoh, Y., J. Fukata, T. Tominaga, Y. Nakai, S. Tami, K. Mori, and H. Imura, Interleukin–6 stimulates the secretion of adrenocorticotropic hormone in conscious freely moving rats, Biochem Biophys Res Commun 155: 1459–1463, 1988.PubMedCrossRefGoogle Scholar
  39. 40.
    Antoni, FA., Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41–residue corticotropin releasing factor, Endocrine Rev 7: 351–378, 1986.CrossRefGoogle Scholar
  40. 41.
    Tilders, F.J.H., F. Berkenbosch, and P.G. Smelik, Control of secretion of peptides related to adrenocorticotropin, melanocyte stimulating hormone and endorphin, Front Horm Res 14:161–196,1985.Google Scholar
  41. 42.
    Sapolsky, R., C. Rivier, G. Yamamoto, P. Plotsky, and W. Vale, Interleukin–1 stimulates the secretion of hypothalamic corticotropin releasing factor, Science 238: 522–524, 1987.PubMedCrossRefGoogle Scholar
  42. 43.
    Uehara, A., P.E. Gottschall, R.R. Dahl, and A. Arimura, Interleukin–1 stimulates ACTH release by an indirect action which requires endogenous corticotropin releasing factor, Endocrinology 121:1580–1582, 1987.PubMedCrossRefGoogle Scholar
  43. 44.
    Berkenbosch, F., D. De Goeij, A. Del Rey, and H. Besedovsky, Neuroendocrine, sympathetic and metabolic responses induced by interleukin–1, Neuroendocrinology ,In Press, 1989.Google Scholar
  44. 45.
    Berkenbosch, F., D. De Goeij, and F.J.H. Tilders, Hypoglycemia enhances turnover of corticotropin releasing factor and of vasopressin in the zona externa of the median eminence, Endocrinology ,In Press, 1989.Google Scholar
  45. 46.
    Whitnall, M.H., E. Mezey, and H. Gainer, Colocalization of corticotropin releasing factor and vasopressin in the median eminence neurosecretory vesicles, Nature 317: 248–250, 1985.PubMedCrossRefGoogle Scholar
  46. 47.
    Whitnall, M.H., D. Smyth, and H. Gainer, Vasopressin coexists in half of the corticotropin releasing factor axons in the external zone of the median eminence, Neuroendocrinology 45: 420–424, 1987.PubMedCrossRefGoogle Scholar
  47. 48.
    Whitnall, M.H., Distribution of provasopressin expressing and provasopressin deficient CRF neurons in the paraventricular hypothalamic nucleus of colchicine treated normal and adrenalectomized rats, Comp Neurol ,In Press, 1989.Google Scholar
  48. 49.
    Uehara, A., S. Gillis, and A. Arimura, Effects of interleukin–1 on hormone release from normal rat pituitary cells in primary culture, Neuroendocrinology 45: 343–347, 1987.PubMedCrossRefGoogle Scholar
  49. 50.
    Tsagarakis, S., G. Gillies, L.H. Rees, M. Besser, and A. Grossman, Interleukin–1 directly stimulates the release of corticotrophin releasing factor from the rat hypothalamus, Neuroendocrinology 49:98–101,1989.PubMedCrossRefGoogle Scholar
  50. 51.
    Bernton, E.W., J.E. Beach, J.W. Holaday, R.C. Smallridge, and H.G. Fein, Release of multiple hormones by a direct action of interleukin–1 on pituitary cells, Science 238: 519–521, 1987.PubMedCrossRefGoogle Scholar
  51. 52.
    Tracey, D.E., and E.B. De Souza, Identification of interleukin–1 receptors in mouse pituitary cell membranes and AtT–20 pituitary tumor cells, Society for Neuroscience, (Abstract #422.11), 1988.Google Scholar
  52. 53.
    Vankelecom, H., P. Carmeleit, J. Van Damme, A. Billiau, and C. Denef, Production of interleukin–6 by folliculo–stellate cells of the anterior pituitary gland in a histiotypic cell aggregate culture system, Neuroendocrinology 49: 102–106, 1989.PubMedCrossRefGoogle Scholar
  53. 54.
    Lumpkin, M.D., The regulation of ACTH secretion by interleukin–1, Science 238: 452–454, 1987.PubMedCrossRefGoogle Scholar
  54. 55.
    Kehrer, P., D. Turnhill, J.M. Dayer, A.F. Muller, and R.C. Gaillard, Human recombinant interleukin–1 beta and alpha, but not recombinant tumor necrosis factor alpha stimulate ACTH release from the rat anterior pituitary cells in vitro in a prostaglandin E2 and cAMP independent manner, Neuroendocrinology 48: 160–166, 1988.PubMedCrossRefGoogle Scholar
  55. 56.
    Suda, T., F. Tozawa, T. Ushiyama, N. Tomori, T. Sumitomo, Y. Nakagamai, M. Yamada, H. Demura, and K. Shizume, Effects of protein kinase C related adrenocorticotropin secretagogues and interleukin–1 on proopiomelanocortin gene expression in rat anterior pituitary cells, Endocrinology 124: 1444–1449, 1989.PubMedCrossRefGoogle Scholar
  56. 57.
    Pike, R.L., and G.J.V. Nossal, Interleukin–1 can act as a beta–cell growth and differentiation factor, Proc Natl Acad Sci USA 82: 8153–8157, 1985.PubMedCrossRefGoogle Scholar
  57. 58.
    Krueger, J.M., J. Walter, C.A. Dinarello, S.M. Wolf, and L. Cheded, Sleep–promoting effects of endogenous pyrogen (interleukin–1), Am J Physiol 246: R994–R999, 1984.PubMedGoogle Scholar
  58. 59.
    Ahmed, M.S., Q.J. Llanos, CA. Dinarello, and CM. Blatteis, Interleukin–1 reduces opioid binding in guinea pig brain, Peptides 6: 1149–1154, 1985.PubMedCrossRefGoogle Scholar
  59. 60.
    Dunn, A.M., Systematic interleukin–1 administration stimulates norepinephrine metabolism paralleling the increased plasma corticosterone, Science 43: 429–435, 1988.Google Scholar
  60. 61.
    Kabiersch, A., A. Del Rey, C.G. Honegger, and H. Besedovsky, Interleukin–1 induces changes in norepinephrine metabolism in the rat brain, Brain Behav Immunol ,In Press, 1989.Google Scholar
  61. 62.
    Partridge, W.M., Neuropeptides and the blood–brain barrier, Ann Rev Physiol 45: 73–82, 1983.CrossRefGoogle Scholar
  62. 63.
    Breder, C., C.A. Dinarello, and C.B. Saper, Interleukin–1 immunoreactive innervation of the human hypothalamus, Science 240: 321–324, 1988.PubMedCrossRefGoogle Scholar
  63. 64.
    Berkenbosch, F., D. Caspers, R. Hellendall, V. Friedrich, L. Refolo, D. Lahiri, D. Blum, and N. Robakis, Roles for interleukin–1 and nerve growth factor in amyloid formation in Alzheimer’s disease, Society for Neuroscience, (Abstract), In Press, 1989.Google Scholar
  64. 65.
    Giulian D., J. Woodward, D.G. Young, J.F. Krebs, and L.B. Lachman, Interleukin–1 injected into mammalian brain stimulates astrogliosis and neurovascularization, J Neurosci 8: 2485–2490, 1988.PubMedGoogle Scholar
  65. 66.
    Giulian, D., D.G. Young, J. Woodward, D.C. Brown, and L.W. Lachman, Interleukin–1 as an astroglial growth factor in the developing brain, J Neurosci 8: 709–714, 1988.PubMedGoogle Scholar
  66. 67.
    Plotsky, P.M., Facilitation of immunoreactive corticotropin releasing factor secretion into hypophysial–portal circulation after activation of catecholaminergic pathways or central norepinephrine injection, Endocrinology 121: 924–930, 1987.PubMedCrossRefGoogle Scholar
  67. 68.
    Morimoto, A., M. Murakami, T. Nakamori, and T. Watanabe, Multiple control of fever production in the central nervous system of rabbits, J Phyiol (Lond) 397: 269–280, 1988.Google Scholar
  68. 69.
    Stitt, J.T., Evidence for the involvement of the Organum vasculosum laminae terminalis in the febrile response of rabbits and rats, J Physiol (Lond) 368: 501–511, 1985.Google Scholar
  69. 70.
    Berkenbosch, F., J. Van Oers, A. Del Rey, F. Tilders, and H. Besedovsky, Corticotropin releasing factor–producing neurons in the rat activated by interleukin–1, Science 238: 524–526, 1987.PubMedCrossRefGoogle Scholar
  70. 71.
    Uehara A., P.E. Gottschall, R.R. Dahl, and A. Arimura, Stimulation of ACTH release by human interleukin–1 beta but not by interleukin–1 alpha in conscious freely moving rats, Biochem Biophys Res Commun 146: 1286–1290, 1987.PubMedCrossRefGoogle Scholar
  71. 72.
    Dubius, J.M., J.M. Dayer, CA. Siegrist–Kaiser, and A.G. Burger, Human recombinant interleukin–1 beta decreases plasma thyroid hormone and thyroid stimulating hormone levels in rats, Endocrinology 123: 2175–2181, 1988.CrossRefGoogle Scholar
  72. 73.
    Berkenbosch, F., I. Vermes, and F.J.H. Tilders, The beta–adrenoceptor blocking drug propranolol prevents secretion of immunoreactive–endorphin and–melanocyte stimulating hormone in response to certain stress stimuli, Endocrinology 115: 1051–1059, 1984.PubMedCrossRefGoogle Scholar
  73. 74.
    Berkenbosch, F., F.J.H. Tilders, and I. Vermes, Beta–adrenoceptor activation mediates stress–induced secretion of beta–endorphin related peptides from the intermediate but not from the anterior pituitary, Nature 305: 237–329, 1983.PubMedCrossRefGoogle Scholar
  74. 75.
    Cannon, J.G., J.B. Tatro, S. Reichlin, and C.A. Dinarello, Alpha–melanocyte–stimulating hormone inhibits immunostimulatory and inflammatory actions of interleukin–1, J Immunol 137: 2232–2236, 1986.PubMedGoogle Scholar
  75. 76.
    Daynes, RA., B.E. Robertson, B. Cho, D.K. Burnham, and R. Newton, Alpha–melanocyte stimulating hormone exhibits target cell selectivity in its capacity to affect interleukin–1 inducible responses in vivo and in vitro, J Immunol 139: 103–109, 1987.PubMedGoogle Scholar
  76. 77.
    Del Ray, A., H.O. Besedovsky, E. Sorkin, M. Da Prada, and S. Arrenbrecht, Immunoregulation mediated by the sympathetic nervous system II, Cell Immunol 63: 329–334, 1981.CrossRefGoogle Scholar
  77. 78.
    Feiten, D.L., S.Y. Feiten, S.L. Carlson, JA. Olschowka, and S. Livnat, Noradrenergic and peptidergic innervation of lymphoid tissue, J Immunol 135: 755s–765s , 1985.Google Scholar
  78. 79.
    Brown, M.R., LA. Fisher, J. Durer, J. Spiess, C. Rivier, and W. Vale, Corticotropin releasing factor: effects on the sympathetic nervous system and oxygen consumption, Life Sci 30: 207–210, 1982.PubMedCrossRefGoogle Scholar
  79. 80.
    Rothwell, N.J., CRF is involved in the pyrogenic and thermogenic effects of interleukin–1 beta in the rat, Am J Physiol 256: E111–E115, 1989.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Frank Berkenbosch
    • 1
  • Roel de Rijk
    • 1
  • Adriana Del Rey
    • 1
    • 2
  • Hugo Besedovsky
    • 1
    • 2
  1. 1.Department of Pharmacology, Medical FacultyFree UniversityAmsterdamThe Netherlands
  2. 2.Section of Neurobiology, Research DepartmentUniversity of Cantonal HospitalBaselSwitzerland

Personalised recommendations