Advertisement

Effects of Thyroid Hormones on the Hypothalamic Dopaminergic Neurons

  • M. J. Reymond
  • T. Lemarchand-Béraud
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 274)

Abstract

On the basis of numerous studies on structural, biochemical, and functional impairments of the central nervous system in instances of fetal or neonatal thyroid deficiency (1–4), it is now acknowledged that thyroid hormones play an important role in brain development. Whereas, trophic effects of the thyroid hormones on brain morphogenesis are generally recognized during fetal and neonatal periods of life, the influence of thyroid hormones on the adult brain is less documented. Yet, functional disturbances—and to a lesser extent morphological impairments—occur in the brain of hypothyroid adult animals and humans. Most of these alterations are reversible through substitutive treatments with thyroid hormones, supportive of the view that thyroid hormones have subtle modulatory effects in the adult central nervous system: effects that may greatly differ from one brain region to another one.

Keywords

Thyroid Hormone Tyrosine Hydroxylase Median Eminence Substitutive Treatment Mediobasal Hypothalamus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Legrand, J., Hormones thyroidiennes et maturation du Systeme nerveux, J Physiologie (Paris) 78:603–652, 1982/1983.Google Scholar
  2. 2.
    Nemeskeri, A., D. Grouselle, A. Faivre-Bauman, and A. Tixier-Vidal, Developmental changes of thyroliberin (TRH) in the rat brain, Neurosci Lett 53: 279–284, 1985.PubMedCrossRefGoogle Scholar
  3. 3.
    Nunez, J., Thyroid hormones, In A. Lajtha (ed) Handbook of Neurochemistry ,Volume 8, Plenum Press, New York, pp. 1–28, 1984.Google Scholar
  4. 4.
    Timiras, P.S., Thyroid hormones and the developing brain, In E. Meisami and P.S. Timiras (eds) Handbook of Human Growth and Developmental Biology, Volume 1: Neural, Sensory and Integrative Development, Part C: Factors Influencing Brain Development ,CRC Press, Boca Raton, pp. 59–82, 1988.Google Scholar
  5. 5.
    Hyyppä M., A histochemical study of the primary catecholamines in the hypothalamic neurons of the rat in relation to the ontogenetic and sexual differentiation, Z Zellforsch 98: 550–560, 1969.PubMedCrossRefGoogle Scholar
  6. 6.
    Smith, G.C., and R.W. Simpson, Monoamine fluorescence in the median eminence of foetal, neonatal and adult rats, Z Zellforsch 104: 541–556, 1970.Google Scholar
  7. 7.
    Loizou, L.A., The postnatal development of monoamine-containing structures in the hypothalamo-hypophyseal system of the albino rat, Z Zellforsch 114: 234–252, 1971.PubMedCrossRefGoogle Scholar
  8. 8.
    Daikoku, S., H. Kawano, Y. Okamura, M. Tokuzen, and I. Nagatsu, Ontogenesis of immunoreactive tyrosine hydroxylase-containing neurons in rat hypothalamus, Develop Brain Res 28: 85–98, 1986.CrossRefGoogle Scholar
  9. 9.
    Ugrumov, M.V., J. Taxi, A. Tixier-Vidal, J. Thibault, and M.S. Mitskevich, Ontogenesis of tyrosine hydroxylase-immunopositive structures in the rat hypothalamus. An atlas of neuronal cell bodies, Neuroscience 29: 135–156, 1989.PubMedCrossRefGoogle Scholar
  10. 10.
    Ugrumov, M.V., A. Tixier-Vidal, J. Taxi, J. Thibault, and M.S. Mitskevich, Ontogenesis of tyrosine hydroxylase-immunopositive structures in the rat hypothalamus. Fiber pathways and terminal fields, Neuroscience 29: 157–166, 1989.PubMedCrossRefGoogle Scholar
  11. 11.
    Geloso, J.P., and G. Bernard, Effets de l’ablation de la thyroide maternelle ou foetale sur le taux des hormones circulantes chez le foetus de rat, Acta Endocrinol 56: 561–566, 1967.PubMedGoogle Scholar
  12. 12.
    Fisher, D.A., J.H. Dussault, J. Sack, and I.J. Chopra, Ontogenesis of hypothalamic-pituitary thyroid function and metabolism in man, sheep, and rat, Recent Prog Horm Res 33: 59–107, 1977.Google Scholar
  13. 13.
    Obregon, M.J., J. Mallol, R. Pastor, G. Morreale de Escobar, and F. Escobar del Rey, L-thyroxine and 3,5,3 -triiodo-L-thyronine in rat embryos before onset of fetal thyroid function, Endocrinology 114: 305–307, 1984.PubMedCrossRefGoogle Scholar
  14. 14.
    Morreale de Escobar, G., R. Pastor, M.J. Obregon, and F. Escobar del Rey, Effects of maternal hypothyroidism on the weight and thyroid hormone content of rat embryonic tissues, before and after onset of fetal thyroid function, Endocrinology 117: 1890–1900, 1985.CrossRefGoogle Scholar
  15. 15.
    Morreale de Escobar, G., M.J. Obregon, and F. Escobar del Rey, Fetal and maternal thyroid hormones, Hormone Res 26: 12–27, 1987.CrossRefGoogle Scholar
  16. 16.
    Puymirat, J., Effects of dysthyroidism on central catecholaminergic neurons, Neurochem Intl 7: 969–977, 1985.CrossRefGoogle Scholar
  17. 17.
    Puymirat, J., A. Barret, R. Picart, A. Vigny, C. Loudes, A. Faivre-Bauman, and A. Tixier-Vidal, Triiodothyronine enhances the morphological maturation of dopaminergic neurons from fetal mouse hypothalamus cultured in serum-free medium, Neuroscience 10: 801–810, 1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Puymirat, J., A. Barret, A. Faivre-Bauman, and A. Tixier-Vidal, Biochemical characterization of the uptake and release of [3H] dopamine by dopaminergic hypothalamic neurons: a developmental study using serum-free medium cultures, Dev Biol 119: 75–84, 1987.PubMedCrossRefGoogle Scholar
  19. 19.
    Puymirat, J., and A. Faivre-Bauman, Evolution of triiodothyronine nuclear binding sites in hypothalamic serum-free cultures: evidence for their presence in neurons and astrocytes, Neurosci Lett 68:299–304,1986.PubMedCrossRefGoogle Scholar
  20. 20.
    Tixier-Vidal, A., R. Picart, C. Loudes, and A. Faivre-Bauman, Effects of polyunsaturated fatty acids and hormones on synaptogenesis in serum-free medium cultures of mouse fetal hypothalamic cells, Neuroscience 17: 115–132, 1986.PubMedCrossRefGoogle Scholar
  21. 21.
    Schwartz, H.L., and J.H. Oppenheimer, Nuclear Triiodothyronine receptor sites in brain: probable identity with hepatic receptors and regional distribution, Endocrinology 103: 267–273, 1978.PubMedCrossRefGoogle Scholar
  22. 22.
    Dozin, B., and P. De Nayer, Triiodothyronine receptors in adult rat brain: topographical distribution and effect of hypothyroidism, Neuroendocrinology 39: 261–266, 1984.PubMedCrossRefGoogle Scholar
  23. 23.
    Ruel, J., R. Faure, and J.H. Dussault, Regional distribution of nuclear T3 receptors in rat brain and evidence for preferential localization in neurons, J Endocrinol Invest 8: 343–348, 1985.PubMedGoogle Scholar
  24. 24.
    Kaplan, M.M., U.D. McCann, K.A. Yaskoski, P.R. Larsen, and J.L. Leonard, Anatomical distribution of phenolic and tyrosyl ring iodothyronine deiodinases in the nervous system of normal and hypothyroid rats, Endocrinology 109: 397–402, 1981.PubMedCrossRefGoogle Scholar
  25. 25.
    Kaplan, M.M., The role of thyroid hormone deiodination in the regulation of hypothalamo-pituitary function, Neuroendocrinology 38: 254–260, 1984.PubMedCrossRefGoogle Scholar
  26. 26.
    Ködding, R., H. Fuhrmann, and A. von zur Mühlen, Investigations of iodothyronine deiodinase activity in the maturing rat brain, Endocrinology 118: 1347–1352, 1986.PubMedCrossRefGoogle Scholar
  27. 27.
    Riskind, P.N., J.M. Kolodny, and P.R. Larsen, The regional hypothalamic distribution of type II 5-monodeiodinase in euthyroid and hypothyroid rats, Brain Res 420: 194–198, 1987.PubMedCrossRefGoogle Scholar
  28. 28.
    Kizer, J.S., J. Humm, G. Nicholson, G. Greeley, and W. Youngblood, The effect of castration thyroidectomy and haloperidol upon the turnover rates of dopamine and norepinephrine and the kinetic properties of tyrosine hydroxylase in discrete hypothalamic nuclei of the male rat, Brain Res 146: 95–107, 1978.PubMedCrossRefGoogle Scholar
  29. 29.
    Nakahara, T., H. Uchimura, M. Hirano, M. Saito, J.S. Kim, and T. Matsumoto, Effects of gonadectomy and thyroidectomy on tyrosine hydroxylase in discrete areas of the rat median eminence, Brain Res 179: 396–400, 1979.PubMedCrossRefGoogle Scholar
  30. 30.
    Jahnke, G., G. Nicholson, G.H. Greeley, W.W. Youngblood, A.J. Prange, and J.S. Kizer, Studies of the neural mechanisms by which hypothyroidism decreases prolactin secretion in the rat, Brain Res 191: 429–441, 1980.PubMedCrossRefGoogle Scholar
  31. 31.
    Andersson, K., K. Fuxe, P. Eneroth, L. Agnati, and V. Locatelli, Hypothalamic dopamine and noradrenaline nerve terminal systems and their reactivity to changes in pituitary-thyroid and pituitary-adrenal activity and to prolactin, In F. Brambilla, G. Racagni, and D. de Wied (eds) Progress in Psychoneuroendocrinology ,Elsevier/North Holland, Amsterdam, pp. 395–406, 1980.Google Scholar
  32. 32.
    Andersson, K., and P. Eneroth, Regression analysis of catecholamine utilization in discrete hypothalamic and forebrain regions of the male rat: effects of thyroidectomy, Acta Physiol Scand 123: 105–119, 1985.PubMedCrossRefGoogle Scholar
  33. 33.
    Anderson, K., and P. Eneroth, The effects of acute and chronic treatment with triiodothyronine and thyroxine on the hypothalamic and telencephalic catecholamine nerve terminal systems of the hypophysectomized male rat, Neuroendocrinology 40: 398–408, 1985.CrossRefGoogle Scholar
  34. 34.
    Ottenweller, J.E., and G.A. Hedge, Thyroid hormones are required for daily rhythms of plasma corticosterone and prolactin concentration, Life Sci 28: 1033–1040, 1981.PubMedCrossRefGoogle Scholar
  35. 35.
    Tang, T.K., S. W. Wang, and P.S. Wang, Effects of thyroidectomy and thyroxine replacement on the responsiveness of the anterior pitiutaries from male rats to thyrotropin releasing hormone in vitro, Experientia 42 1031–1034, 1986.PubMedCrossRefGoogle Scholar
  36. 36.
    Demarest, K.T., and K.E. Moore, Accumulation of L-dopa in the median eminence: an index of tuberoinfundibular dopaminergic nerve activity, Endocrinology 106: 463–468, 1980.PubMedCrossRefGoogle Scholar
  37. 37.
    Reymond, M.J., and J.C. Porter, Hypothalamic secretion of dopamine after inhibition of aromatic L-amino acid decarboxylase activity, Endocrinology 111: 1051–1056,1982.PubMedCrossRefGoogle Scholar
  38. 38.
    Porter, J.C., and K.R. Smith, Collection of hypophysial stalk blood in rats, Endocrinology 81:1182–1185, 1967.PubMedCrossRefGoogle Scholar
  39. 39.
    Porter, J.C., Methods for studying pituitary-hypothalamic axis in situ, Methods Enzymol 39: 166–183, 1975.PubMedCrossRefGoogle Scholar
  40. 40.
    Reymond, M.J., W. Benotto, and T. Lemarchand-Béraud, The secretory activity of the tuberoinfundibular dopaminergic neurons is modulated by the thyroid status in the adult rat: consequence on prolactin secretion, Neuroendocrinology 46: 62–68, 1987.PubMedCrossRefGoogle Scholar
  41. 41.
    Eckland, D.J.A., S. Biswas, and S.L. Lightman, Hypothalamo-hypophyseal portal blood sampling from laboratory rats. The effects of endocrine manipulations on portal blood catecholamine concentrations, Exper Brain Res 72: 640–644, 1988.Google Scholar
  42. 42.
    Rondeel, J.M.M., W.J. De Greef, P. van der Schoot, B. Karels, W. Klootwijk, and T.J. Visser, Effects of thyroid status and paraventricular area lesions on the release of thyrotropin-releasing hormone and catecholamines into hypophysial portal blood, Endocrinology 123: 523–527, 1988.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang, P.S., HA. González, M.J. Reymond, and J.C. Porter, Mass and in situ molar activity of tyrosine hydroxylase in the median eminence. Effect of thyroidectomy and thyroid hormone replacement, Neuroendocrinology 49: 659–663, 1989.PubMedCrossRefGoogle Scholar
  44. 44.
    Porter, J.C., In situ activity and phosphorylation of tyrosine hydroxylase in the median eminence, Mol Cell Endocrinol 46: 21–27, 1986.PubMedCrossRefGoogle Scholar
  45. 45.
    Blum, M., B.S. McEwen, and J.L. Roberts, Transcriptional analysis of tyrosine hydroxylase gene expression in the tuberoinfundibular dopaminergic neurons of the rat arcuate nucleus after estrogen treatment, J Biol Chem 262: 817–821, 1987.PubMedGoogle Scholar
  46. 46.
    Dozin-van Roy, B., and P. De Nayer, Triiodothyronine binding to brain cytosol receptors during maturation, FEBS Lett 96: 152–154, 1978.CrossRefGoogle Scholar
  47. 47.
    Geel, S.E., Development-related change of triiodothyronine binding to brain cytosol receptors, Nature 269: 428–430, 1977.PubMedCrossRefGoogle Scholar
  48. 48.
    Lennon, A.M., J. Osty, and J. Nunez, Cytosolic thyroxine-binding protein and brain development, Mol Cell Endocrinol 18: 201–214, 1980.PubMedCrossRefGoogle Scholar
  49. 49.
    Dratman, M.B., F.L. Crutchfield, J. Axelrod, R.W. Colburn, and N. Thoa, Localization of triiodothyronine in nerve ending fractions of rat brain, Proc Natl Acad Sci USA 73: 941–944, 1976.PubMedCrossRefGoogle Scholar
  50. 50.
    Dratman, M.B., Y. Futaesaku, F.L. Crutchfield, N. Berman, B. Payne, M. Sar, and W.E. Stumph, Iodine-125-labeled triiodothyronine in rat brain: evidence for localization in discrete neural systems, Science 215: 309–312, 1982.PubMedCrossRefGoogle Scholar
  51. 51.
    Mashio, Y., M. Inada, K. Tanaka, H. Ishii, K. Naito, M. Nishikawa, K. Takahashi, and H. Imura, High affinity 3,5,3-triiodothyronine binding to synaptosomes in rat cerebral cortex, Endocrinology 110: 1257–1261, 1982.PubMedCrossRefGoogle Scholar
  52. 52.
    Mashio, Y., M. Inada, K. Tanaka, H. Ishii, K. Naito, M. Nishikawa, K. Takahashi, and H. Imura, Synaptosomal T3 binding sites in rat brain: their localization on synaptic membrane and regional distribution, Acta Endocrinol 104: 134–138, 1983.PubMedGoogle Scholar
  53. 53.
    Bestetti, G.E., M.J. Reymond, I.V. Perrin, P.C. Kniel, T. Lemarchand-Beraud, and G.L. Rossi, Thyroid and pituitary secretory disorders in streptozotocin-diabetic rats are associated with severe structural changes of these glands, Virchows Arch-Cell Pathology [B] 53: 69–78, 1987.CrossRefGoogle Scholar
  54. 54.
    Zaninovich, A.A., T .J. Brown, R. Boado, N.R. Bromage, and A J. Matty, Thyroxine metabolism in diabetic rats, Acta Endocrinol 86: 336–343, 1977.PubMedGoogle Scholar
  55. 55.
    Reymond, M.J., and T. Lemarchand-Beraud, Hyperactivity of the hypothalamic dopaminergic neurons and hyposecretion of prolactin in diabetic rats: influence of the thyroid status? 8th International Congress of Endocrinology ,Kyoto, Japan, (Abstract) July 17–23,1988.Google Scholar
  56. 56.
    Bestetti, G.E., C.E. Boujon, M.J. Reymond, and G.L. Rossi, Functional morphological changes in mediobasal hypothalamus of streptozotocin-induced diabetic rats, Diabetes 38: 471–476, 1989.PubMedCrossRefGoogle Scholar
  57. 57.
    Bestetti, G.E., M.J. Reymond, C.E. Boujon, T. Lemarchand-Beraud, and G.L. Rossi, Impaired release of TRH by the mediobasal hypothalamus of streptozotocin-diabetic rats: functional and morphological aspects, Diabetes ,Submitted.Google Scholar
  58. 58.
    Joanny, P., G. Peyre, J. Steinberg, B. Conte-Devolx, and C. Oliver, Secretion hypothalamique de somatostatine chez les rats diabetiques, Diabete&Metabolisme 14: XXIV (Abstract), 1988.Google Scholar
  59. 59.
    Grino, M., V. Guillaume, A. Caraty, B. Conte-Devolx, P. Joanny, F. Boudouresque, G. Pesce, J. Steinberg, G. Peyre, A. Dutour, P. Giraud, and C. Oliver, Circulating blood glucose and hypothalamic-pituitary secretion, In J.C. Porter and D. Ježová (eds) Circulating Regulatory Factors and Neuroendocrine Function ,Plenum Press, New York, pp. 391–406, 1990.Google Scholar
  60. 60.
    Loudes, C., A. Faivre-Bauman, A. Barret, D. Gouselle, J. Puymirat, and A. Tixier-Vidal, Release of immunoreactive TRH in serum-free cultures of mouse hypothalamic cells, Develop Brain Res 9: 231–234, 1983.CrossRefGoogle Scholar
  61. 61.
    Oliver, C, R.L. Eskay, and J.C. Porter, Developmental changes in brain TRH and in plasma and pituitary TSH and prolactin levels in the rat, Biol Neonate 37: 145–152, 1980.PubMedCrossRefGoogle Scholar
  62. 62.
    Schaeffer, J.M., and M.J. Brownstein, Ontogeny of TRH-like material in several regions of the rat brain, Brain Res 182: 207–210, 1980.PubMedCrossRefGoogle Scholar
  63. 63.
    Burgunder, J.M., and T. Taylor, Ontogeny of thyrotropin-releasing hormone gene expression in the rat diencephalon, Neuroendocrinology 49: 631–640, 1989.PubMedCrossRefGoogle Scholar
  64. 64.
    Nemeskeri, A., D. Grouselle, A. Faivre-Bauman, and A. Tixier-Vidal, Developmental changes of thyroliberin (TRH) in the rat brain, Neurosci Lett 53: 279–284, 1985.PubMedCrossRefGoogle Scholar
  65. 65.
    Segerson, T.P., J. Kauer, H.C. Wolfe, H. Mobtaker, P. Wu, I.M.D. Jackson, and R.M. Lechan, Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus, Science 238: 78–80, 1987.PubMedCrossRefGoogle Scholar
  66. 66.
    Koller, K.J., R.S. Wolff, M.K. Warden, and R.T. Zoeller, Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus, Proc Natl Acad Sci USA 84: 7329–7333 1987.PubMedCrossRefGoogle Scholar
  67. 67.
    Dyess, E.M., T.P. Segerson, Z. Liposits, W.K. Pauli, M.M. Kaplan, P. Wu, I.M.D. Jackson, and R.M. Lechan, Triiodothyronine exerts direct cell-specific regulation of thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus, Endocrinology 123: 2291–2297, 1988.PubMedCrossRefGoogle Scholar
  68. 68.
    Zoeller, R.T., R.S. Wolff, and K.J. Koller, Thyroid hormone regulation of messenger ribonucleic acid encoding thyrotropin (TSH)-releasing hormone is independent of the pituitary gland and TSH, Mol Endocrinol 2: 248–252, 1988.PubMedCrossRefGoogle Scholar
  69. 69.
    Eskay, R.L., C. Oliver, N. Ben-Jonathan, and J.C. Porter, Hypothalamic hormones in portal and systemic blood, In M. Motta, P.G. Crosignani, and L. Martini (eds) Hypothalamic Hormones: Chemistry, Physiology ,Pharmacology and Clinical Uses ,Academic Press, London, pp. 125–137, 1975.Google Scholar
  70. 70.
    Ching, M.C.H., and R.D. Utiger, Hypothalamic portal blood immunoreactive TRH in the rat: lack of effect of hypothyroidism and thyroid hormone treatment, J Endocrinol Invest 6: 347–352, 1983.PubMedGoogle Scholar
  71. 71.
    Martin, D., J. Epelbaum, M.T. Bluet-Pajot, M. Prelot, C. Kordon, and D. Durand, Thyroidectomy abolishes pulsatile growth hormone secretion without affecting hypothalamic somatostatin, Neuroendocrinology 41: 476–481, 1985.PubMedCrossRefGoogle Scholar
  72. 72.
    Katakami, H., T.R. Down, and LA. Frohman, Decreased hypothalamic growth hormone-releasing hormone content and pituitary responsiveness in hypothyroidism, J Clin Invest 77: 1704–1711, 1986.PubMedCrossRefGoogle Scholar
  73. 73.
    Gillioz, P., P. Giraud, B. Conte-Devolx, P. Jaquet, J.L. Codaccioni, and C. Oliver, Immunoreactive somatostatin in rat hypophysial portal blood, Endocrinology 104: 1407–1410, 1979.PubMedCrossRefGoogle Scholar
  74. 74.
    Berelowitz, M., K. Maeda, S. Harris, and LA. Frohman, The effect of alterations in the pituitary-thyroid axis on hypothalamic content and in vitro release of somatostatin-like immunoreactivity, Endocrinology 107: 24–29, 1980.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. J. Reymond
    • 1
  • T. Lemarchand-Béraud
    • 1
  1. 1.Division of Endocrinology, Department of Internal MedicineC.H.U.V.LausanneSwitzerland

Personalised recommendations