Interactions Between the Circulating Hormones Angiotensin and Atrial Natriuretic Peptide and Their Receptors in Brain

  • J. M. Saavedra
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 274)


Angiotensin II (ANG II) and atrial natriuretic peptide (ANP) play important roles in the regulation of cardiovascular function and fluid balance (1,2). Circulating ANG II stimulates specific receptors to induce vasoconstriction, aldosterone production, vasopressin release, and sodium retention (2). There are alterations in the peripheral renin-angiotensin system in genetic and experimental hypertension (3). The renin-angiotensin system is also important in human hypertension, and blockade of the last step of ANG II formation by inhibition of the angiotensin converting enzyme (ACE) is one of the standard therapies. ANP, produced in the heart, is released to the circulation and is involved in the control of fluid volume and cardiovascular function (1). ANP metabolism is altered in hypertension (4). The peripheral effects of ANP, increased sodium and water excretion by the kidneys, decreased aldosterone production, vasodilation and antihypertensive actions are antithetical to those of the water conservation peptides, vasopressin, and ANG II (1). For these reasons peripheral ANP and ANG II are considered to be part of physiologically antagonistic regulatory systems.


Atrial Natriuretic Peptide Paraventricular Nucleus Atrial Natriuretic Factor Solitary Tract Subfornical Organ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeBold, A.J., Atrial natriuretic factor: a hormone produced by the heart, Science 230: 767–770, 1985.CrossRefGoogle Scholar
  2. 2.
    Vallotton, M.B., The renin-angiotensin system, Trends Pharmacol Sci 8: 69–74, 1987.CrossRefGoogle Scholar
  3. 3.
    Niwa, M., A. Israel, and J.M. Saavedra, Pindolol decreases plasma angiotensin-converting enzyme activity in young spontaneously hypertensive rats, Eur J Pharmacol 110: 133–136, 1985.PubMedCrossRefGoogle Scholar
  4. 4.
    Morii, N., K. Nakao, M. Kihara, A. Sugawara, M. Sakamoto, Y. Yamori, and H. Imura, Decreased content in left atrium and increased plasma concentration of atrial natriuretic polypeptide in spontaneously hypertensive rats (SHR) and SHR stroke-prone, Biochem Biophys Res Commun 135: 74–81, 1986.PubMedCrossRefGoogle Scholar
  5. 5.
    Phillips, M.I., Functions of angiotensin in the central nervous system, Ann Rev Physiol 49: 413–435,1987.CrossRefGoogle Scholar
  6. 6.
    Antunes-Rodrigues, J., S.M. McCann, and W.K. Samson, Central administration of atrial natriuretic factor inhibits saline preference in the rat, Endocrinology 118: 1726–1728, 1986.PubMedCrossRefGoogle Scholar
  7. 7.
    Haskins, J.T., G. J. Zingara, and R.W. Lappe, Rat atriopeptin III alters hypothalamic neuronal activity, Neurosci Lett 67: 279–284, 1986.PubMedCrossRefGoogle Scholar
  8. 8.
    Obana, K., M. Naruse, T. Inagami, A.B. Brown, K. Naruse, F. Kurimoto, H. Sakurai, H. Demura, and K. Shizune, Atrial natriuretic factor inhibits vasopressin secretion from rat posterior pituitary, Biochem Biophys Res Commun 132: 1088–1094, 1985.PubMedCrossRefGoogle Scholar
  9. 9.
    Mendelsohn, FA.O., R. Quirion, J.M. Saavedra, G. Aguilera, and K. Catt, Autoradiographic localization of angiotensin II receptors in rat brain, Proc Natl Acad Sci USA 81: 1575–1579, 1984.PubMedCrossRefGoogle Scholar
  10. 10.
    Quirion R., M. Dalpe, and T.V. Dam, Characterization and distribution of receptors for atrial natriuretic peptides in mammalian brain, Proc Natl Acad Sci USA 83: 174–178, 1986.PubMedCrossRefGoogle Scholar
  11. 11.
    Saavedra, J.M., A. Israel, L.M. Plunkett, M. Kurihara, K. Shigematsu, and F.M.A. Correa, Quantative distribution of angiotensin II binding sites in rat brain by autoradiography, Peptides 7: 679–687,1986.PubMedCrossRefGoogle Scholar
  12. 12.
    Shigematsu, K., J.M. Saavedra, L.M. Plunkett, M. Kurihara, and F.M.A. Correa, Angiotensin II binding sites in the anteroventral-third ventricle (AV3V) area and related structures of the rat brain, Neurosci Lett 67: 37–41, 1986.PubMedCrossRefGoogle Scholar
  13. 13.
    Kurihara, M., J.M. Saavedra, and K. Shigematsu, Localization and characterization of atrial natriuretic peptide binding sites in discrete areas of rat brain and pituitary gland by quantitative autoradiography, Brain Res 408: 31–39, 1987.PubMedCrossRefGoogle Scholar
  14. 14.
    Jacobowitz, D.M., G. Skofitsch, H.R. Keiser, R.L. Eskay, and N. Zamir, Evidence for the existence of atrial natriuretic factor-containing neurons in the rat brain, Neuroendocrinology 40: 92–94, 1985.PubMedCrossRefGoogle Scholar
  15. 15.
    Nazarali, A.J., J.S. Gutkind, Fernando M.A. Correa, and J.M. Saavedra, Enalapril decreases angiotensin II receptors in subfornical organ of SHR, Am J Physiol 256: H1609–H1614, 1989.PubMedGoogle Scholar
  16. 16.
    Kvetanský, R., V.K. Weise, and IJ. Kopin, Elevation of adrenal tyrosine hydroxylase and phenylethanol-amine-N-methyl transferase by repeated immobilization of rats, Endocrinology 87: 744–749, 1970.CrossRefGoogle Scholar
  17. 17.
    Israel, A., L.M. Plunkett, and J.M. Saavedra, Quantitative autoradiographic characterization of receptors for angiotensin II and other neuropeptides in individual brain nuclei and peripheral tissues from single rats, Cell Mol Neurobiol 5: 211–222, 1985.PubMedCrossRefGoogle Scholar
  18. 18.
    Saavedra, J.M., F.MA. Correa, L.M. Plunkett, A. Israel, M. Kurihara, and K. Shigematsu, Binding of angiotensin and atrial natriuretic peptide in brain hypertensive rats, Nature 320: 758–760, 1986.PubMedCrossRefGoogle Scholar
  19. 19.
    Nazarali, A.J., J.S. Gutkind, and J.M. Saavedra, Calibration of [125I]-polymer standards with [125I]-brain paste standards for use in quantitative receptor autoradiography, J Neurosci Methods, In Press.Google Scholar
  20. 20.
    Ganten, D., K. Hermann, C. Bayer, T. Unger, and R.E. Lang, Angiotensin synthesis in the brain and increased turnover in hypertensive rats, Science 221: 869–871, 1983.PubMedCrossRefGoogle Scholar
  21. 21.
    Wong, M., W. K. Samson, C.A. Dudley, and R.L. Moss, Direct, neuronal action of atrial natriuretic factor in the rat brain, Neuroendocrinology 44: 49–53, 1986.PubMedCrossRefGoogle Scholar
  22. 22.
    Castrén, E., and J.M. Saavedra, Repeated stress increases the density of angiotensin II binding sites in rat paraventricular nucleus and subfornical organ, Endocrinology 122: 370–372, 1988.PubMedCrossRefGoogle Scholar
  23. 23.
    Swanson, L.W., and P.E. Sawchenco, Paraventricular nucleus: a site for the integration of neuroendocrine and anatomic mechanisms, Neuroendocrinology 31: 410–417, 1980.PubMedCrossRefGoogle Scholar
  24. 24.
    Steardo, L., and J.A. Nathanson, Brain barrier tissues: end organs for atriopeptins, Science 235: 470–473, 1987.PubMedCrossRefGoogle Scholar
  25. 25.
    Gutkind, J.S., M. Kurihara, and J.M. Saavedra, Increased angiotensin II receptors in brain nuclei of DOCA-salt hypertensive rats, Am J Physiol 255: H646–H650, 1988.PubMedGoogle Scholar
  26. 26.
    Brody, M.J., and A.K. Johnson, Role of the anteroventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation and hypertension, In W.F. Ganong and L. Martini (eds) Frontiers in Neuroendocrinology ,Raven Press, New York, Volume 6, pp. 249–292, 1980.Google Scholar
  27. 27.
    Chen, Y.F., M.D. Lindheimer, and S. Oparil, Increased vasopressinergic activity following DOCA administration in the rat, Brain Res Bull 16: 93–98, 1986.PubMedCrossRefGoogle Scholar
  28. 28.
    Itaya, Y., H. Suzuki, S. Matsukawa, K. Kondo, and T. Saruta, Central renin-angiotensin system and the pathogenesis of DOCA-salt hypertension in rats, Am J Physiol 251: H261–H268, 1986.PubMedGoogle Scholar
  29. 29.
    Weyhenmeyer, J.A., and J.M. Meyer, Angiotensin II in the brain and brainsten of the DOCA salt hypertensive rat, Clin Exp Hyperten A7 73–92, 1985.CrossRefGoogle Scholar
  30. 30.
    Gutkind, J.S. M. Kurihara, E. Castrén, and J.M. Saavedra, Atrial natriuretic peptide receptors in sympathetic ganglia: biochemical response and alterations in genetically hypertensive rats, Biochem Biophys Res Commun 149: 65–72, 1987.PubMedCrossRefGoogle Scholar
  31. 31.
    Crofton, J.T., L. Share, R.E. Shade, C. Allen, and D. Tanowski, Vasopressin in the rat with spontaneous hypertension, Am J Physiol 235: H361–H366, 1978.PubMedGoogle Scholar
  32. 32.
    Wilson, K.M., C. Sumners, S. Hathaway, and M.J. Fregly, Mineralo-corticoids modulate central angiotensin II receptors in rats, Brain Res 382: 87–96, 1986.PubMedCrossRefGoogle Scholar
  33. 33.
    Israel, A., F.M.A. Correa, M. Niwa, and J.M. Saavedra, Quantitative determination of angiotensin II binding sites in rat brain and pituitary gland by autoradiography, Brain Res 322: 341–345, 1984.PubMedCrossRefGoogle Scholar
  34. 34.
    Akaishi, T., H. Negoro, and S. Kobayasi, Electrophysiological evidence for multiple sites of actions of angiotensin II for stimulating paraventricular neurosecretory cells in the rat, Brain Res 220:386–390,1981.PubMedCrossRefGoogle Scholar
  35. 35.
    Ferguson, A.V., and L.P. Renaud, Hypothalamic paraventricular neucleus lesions decrease pressor responses to subfornical organ stimulation, Brain Res 305: 361–364, 1984.PubMedCrossRefGoogle Scholar
  36. 36.
    Killcoyne, M.M., D. L. Hoffman, and E.H. Zimmerman, Immunocytochemical localization of angiotensin II and vasopressin in rat hypothalamus: evidence for production in the same neuron, Clin Sci 59:57S–60S, 1980.Google Scholar
  37. 37.
    Mangiapane, M.L., T.N. Thrasher, L.C. Keil, J.B. Simpson, and W.F. Ganong, Deficits in drinking and vasopressin secretion after lesions of the nucleus medianus, Neuroendocrinology 37: 73–77, 1983.PubMedCrossRefGoogle Scholar
  38. 38.
    Matsuguchi, H., and P.G. Schmid, Pressor response to vasopressin and impaired baroreflex funcion in DOCA-salt hypertension, Am J Physiol 242: H44–H49, 1982.PubMedGoogle Scholar
  39. 40.
    Nazarail, A.J., J.S. Gutkind, and J.M. Saavedra, Regulation of angiotensin II binding sites in subfornical organ and other rat brain nuclei after water deprivation, Cell Mol Neurobiol 7: 447–455, 1987.CrossRefGoogle Scholar
  40. 41.
    Mann, J.F.E., A.K. Johnson, and D. Ganten, Plasma angiotensin II: dipsogenic levels and angiotensin-generating capacity of renin, Am J Physiol 238: R372–R377, 1980.PubMedGoogle Scholar
  41. 42.
    Castrén, E., and J.M. Saavedra, Angiotensin II receptors in paraventricular nucleus, subfornical organ, and pituitary gland of hypophysectomized, adrenalectomized, and vasopressin-deficient rats, Proc Natl Acad Sci USA 86: 725–729, 1989.PubMedCrossRefGoogle Scholar
  42. 43.
    Jindra, A., Jr., R. Kvetanský, T.I. Belova, and K.V. Sudakov, Effect of acute and repeated immobilization stress on plasma renin activity, catecholamines and corticosteroids in Wistar and August rats, In E. Usdin, R. Kvetanský, and I.J. Kopin (eds) Catecholamines and Stress: Recent Advances ,Elsevier/North Holland, Amsterdam, pp. 249–254, 1980.Google Scholar
  43. 44.
    Douglas, J.G., Corticosteroids decrease glomerular angiotensin receptors, Am J Physiol 252: F453–457, 1987.PubMedGoogle Scholar
  44. 45.
    Spinedi, E., C.A. Johnston, A. Chisari, and A. Negro-Vilar, Role of central epinephrine on the regulation of corticotropin-releasing factor and adrenocorticotropin secretion, Endocrinology 122:1977–1983,1988.PubMedCrossRefGoogle Scholar
  45. 46.
    Sokol, H.W., and E.A. Zimmerman, The hormonal status of the Brattleboro rat, In H.W. Sokol and H. Valtin (eds) The Brattleboro Rats ,The New York Academy of Sciences, New York, 394: 535–548,1982.Google Scholar
  46. 47.
    Hasegawa, H., A. Nasjletti, K. Rice, and G.M.C. Masson, Role of pituitary and adrenals in the regulation of plasma angiotensinogen, Am J Physiol 225: 1–6, 1973.PubMedGoogle Scholar
  47. 48.
    King, S.J., J.W. Harding, and K.E. Moe, Elevated salt appetite and brain binding of angiotensin II in mineralocorticoid-treated rats, Brain Res 448: 140–149, 1988.PubMedCrossRefGoogle Scholar
  48. 49.
    Yagil, Y., and L.R. Karkoff, The differential effect of aldosterone and dexamethasone on pressor responses in adrenalectomized rats, Hypertension 11: 174–178, 1988.PubMedGoogle Scholar
  49. 50.
    Saavedra, J.M., A. Israel, F.M.A. Correa, and M. Kurihara, Increased atrial natriuretic peptide (6-33) binding sites in the subfornical organ of water deprived and Brattleboro rats, Proc Soc Exp Biol Med 182: 559–563, 1986.PubMedGoogle Scholar
  50. 51.
    Saavedra, J.M., A. Israel, and M. Kurihara, Increased atrial natriuretic peptide binding sites in the rat subfornical organ after water deprivation, Endocrinology 120: 426–428, 1987.PubMedCrossRefGoogle Scholar
  51. 52.
    Ogawa, K., MA. Henry, J. Tange, EA. Woodcock, and C.I. Johnston, Atrial natriuretic peptide in dehydrated Long-Evans rats and Brattleboro rats, Kidney Int 31: 760–765, 1987.PubMedCrossRefGoogle Scholar
  52. 53.
    Lloyd, C.W., E. Loewy, S. Pierog, K. Bradwick, and R. Sostheim, Presence of antidiuretic material in blood of hypophysectomized rats, Proc Soc Exp Biol Med 85: 333–336, 1954.PubMedGoogle Scholar
  53. 54.
    Samson, W.K., M.C. Aguila, J. Martinovic, J. Antunes-Rodrigues, and M. Norris, Hypothalamic action of atrial natriuretic factor to inhibit vasopressin secretion, Peptides 8: 449–454, 1987.PubMedCrossRefGoogle Scholar
  54. 55.
    Sandaert, D.G., D.F. Cechetto, P. Needleman, and C.P. Saper, Inhibition of the firing of vasopressin neurons by atriopeptin, Nature 329: 151–153, 1987.CrossRefGoogle Scholar
  55. 56.
    Zamir, N., M. Haass, J.R. Dave, and Z. Zukowska-Grojec, Anterior pituitary gland modulates the release of atrial natriuretic peptides from cardiac atria, Proc Natl Acad Sci USA 84: 541–545, 1987.PubMedCrossRefGoogle Scholar
  56. 57.
    Januszewicz, P., G. Thibault, J. Gutkowska, R. Garcia, C. Mercure, F. Jolicoeur, J. Genest, and M. Cantin, Atrial natriuretic factor and vasopressin during dehydration and rehydration in the rat, Am J Physiol 251: E497–E501, 1986.PubMedGoogle Scholar
  57. 58.
    Saavedra, J.M., Regulation of atrial natriuretic peptide receptors in the rat brain, Cell Mol Neurobiol 7: 151–173, 1987.PubMedCrossRefGoogle Scholar
  58. 59.
    Castrén, E., and J.M. Saavedra, Lack of vasopressin increases hypothalamic atrial natriuretic peptide binding sites, Am J Physiol 257 R168–R173, 1989.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. M. Saavedra
    • 1
  1. 1.Section on Pharmacology, Laboratory of Clinical ScienceNational Institute of Mental HealthBethesdaUSA

Personalised recommendations