Kindling 4 pp 61-73 | Cite as

Double-Label Quantitative Autoradiographic Studies of Anaerobic Glucose Metabolism in Limbic Seizures

  • Robert F. Ackermann
  • James L. Lear
Part of the Advances in Behavioral Biology book series (ABBI, volume 37)


Sokoloff’s (1) radiolabeled 2-deoxyglucose (2DG) method for calculating the local cerebral metabolic rate for glucose (LCMR) has been employed to determine those structures most involved in a variety of experimental and clinical paradigms. It has proven particularly valuable in identifying the structures most involved in a number of human and animal seizure states (2).


Glucose Metabolism Kainic Acid Aerobic Glycolysis Optic Tectum Glucose Metabolic Rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Sokoloff, M. Reivich, C. Kennedy, M. H. Des Rosiers, i(4 S. Patlak, K. D. Pettigrew, O. Sakurada, and M. Shinohara, The [C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem. 28: 897 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    R. F. Ackermann, J. Engel Jr., and M. E. Phelps, Identification of seizure-mediating brain structures with the deoxyglucose method: Studies of human epilepsy with positron emission tomography, and animal seizure models with contact autoradiography, in: “Advances in Neurology, vol. 44, ” A. V. Delgado-Escueta, A A. Ward Jr., D. M. Woodbury, and R. J. Porter, eds., Raven Press, New York (1986).Google Scholar
  3. 3.
    M. C. Evans and B. S. Meldrum, Regional brain glucose metabolism in chemically-induced seizures in the rat, Brain Res. 297: 235 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    F. Plum and T. E. Duffy, The couple between cerebral metabolism and blood flow during seizures, in: “Brain Work, Alfred Benzon Symposium VIII,” D. H. Ingvar and N.A. Lassen, eds., Munksgaard, Copenhagen (1975).Google Scholar
  5. 5.
    M. Erecinska and I. A. Silver, ATP and brain function, J. Cereb. Blood Flow Metab. 9: 2 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    S. Rehncrona, H. N. Hauge, and B. K. Siesjö, Enhancement of iron-catalyzed free radical formation by acidosis in brain homogenates: Difference in effect by lactic acid and CO2 J. Cereb. Blood Flow Metab. 9: 65 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    R. C. Collins, D. W. McCandless14and I. L. Wagman, Cereal glucose utilization: Comparison of [C]deoxyglucose and [6- C]glucose quantitative autoradiography, J. Neurochem. 49: 1564 0987 ).Google Scholar
  8. 8.
    P. T. Fox, M. E. Raichle, M A. Mintun, and C. Dence, Nonoxidative glucose consumption during focal physiologic neural activity, Science 241: 462 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    J. L. Lear and R. F. Ackermann, Comparison of cerebral glucose metabolic rates measured with fluorodeoxyglucose labeled in the 1, 2, 3–4, and 6 positions using double label quantitative digital autoradiography, J. Cereb. Blood Flow Metab. 8: 575 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    C. J. Van den Berg. and R. Bruntink, Glucose oxidation in the brain during seizures: Experiments with labeled glucose and deoxygludose, in: “Glutamine, Glutamate, and GABA in the Central Nervous System,” L. Hertz, E. Kvamme, E. G. McGeer, and A. Schousboe, eds., Alan R. Liss, New York (1983).Google Scholar
  11. 11.
    R. F. Ackermann and J. L. Lear, Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose, J. Cereb. Blood Flow Metab. 9: 774 (1989).PubMedCrossRefGoogle Scholar
  12. 12.
    J. E. Cremer, V. J. Cunningham, W. M. Pardridge, L. D. Braun, and W. H. Oldendorf, Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats, J. Neurochem. 33: 439 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    W. H. Oldendorf, L. Braun, and E. Cornford, pH dependence of blood-brain barrier permeability to lactate and nicotine, Stroke 10: 577 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    R. A. Hawkins, A. M. Mans, D. W. Davis, J. R. Vitlt, and L. S. Hibbard, Cerebral glucose use measured with [C]glucose labeled in the 1,2, or 6 position, Am. J. Physiol. 248 (Cell Physiol. 17): C170 (1985).PubMedGoogle Scholar
  15. 15.
    R. J. Racine, Modification of seizure activity by electrical stimulation: II. Motor seizure, Electroenceph. clin. neurophysiol. 32: 281 (1973).CrossRefGoogle Scholar
  16. 16.
    E. Pinard, A. S. Rigaud, D. Riche, R. Naquet, and J. Seylaz, Continuous determination of the cerebrovascular changes induced by bicuculline and kainic acid in unanaesthetized spontaneously breathing rats, Neuroscience 23: 943 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Ueki, F. Linn, and K.-A. Hossmann, Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain, J. Cereb. Blood Flow Metab. 8: 486 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    R. J. Paul, Functional compartmentalization of oxidative and glycolytic metabolism in vascular smooth muscle, Am. J. Physiol. 244 (Cell Physiol. 13): C399 (1983).PubMedGoogle Scholar
  19. 19.
    E. Racker, Why do tumor cells have a high aerobic glycolysis?, J. Cell. Physiol. 89: 697 (1976).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Mata, D. J. Fink, H. Gainer, C. B. Smith, L. Davidsen, H. Savaki, W. J. Schwartz, and L. Sokoloff, Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity, J. Neurochem. 34: 213 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    N. Brookes and P. J. Yarowsky, Determinants of deoxyglucose uptake in cultured astrocytes: The role of the sodium pump, J. Neurochem. 44: 473 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    R. K. Orkand, J. G. Nicholls, and S. W. Kuffler, Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia, J. Neurophysiol. 29: 788 (1966).PubMedGoogle Scholar
  23. 23.
    R. D. Keynes and J. M. Ritchie, The movements of labelled ions in mammalian non-myelinated nerve fibres, J. Physiol. 179: 333 (1965).PubMedGoogle Scholar
  24. 24.
    H. Mcllwain, Phosphates of brain during in vivo metabolism: Effects of oxygen, glucose, glutamate, glutamine, and calcium and potassium salts, Biochem. J. 52: 289 (1952).Google Scholar
  25. 25.
    R. Casteels and F. Wuytack, Aerobic and anaerobic metabolism in smooth muscle cells of taenia coli in relation to active ion transport, J. Physiol. 250: 203 (1975).PubMedGoogle Scholar
  26. 26.
    M. Shinohara, B. Dollinger, G. Brown, S. Rapoport, and L. Sokoloff, Cerebral glucose utilization: Local changes during and after recovery from spreading cortical depression, Science 203: 188 (1979).PubMedCrossRefGoogle Scholar
  27. 27.
    W. G. Kuhr and J. Korf, Extracellular lactic acid as an indicator of brain metabolism, J. Cereb. Blood Flow Metab. 8: 130 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    L. J. King, O. H. Lowry, J. V. Passonneau, and V. Venson, Effects of convulsants on energy reserves in the cerebral cortex, J. Neurochem. 14: 599 (1967).PubMedCrossRefGoogle Scholar
  29. 29.
    W. P. Pulsinelli and R. P. Kraig, Photic stimulation causes enhanced glycolysis in the superior colliculus, Soc. Neurosci Abstr. 14: 48 (1988).Google Scholar
  30. 30.
    D. Richter and R. M. C. Dawson, Brain metabolism in emotional excitement and in sleep, Am. J. Physiol. 154: 73 (1948).PubMedGoogle Scholar
  31. 31.
    M. Nedergaard, S A. Goldman, and W. A. Pulsinelli, Lactic-acidinduced intracellular acidification in primary cultures of mammalian brain, J. Cereb. Blood Flow Metab. 9 (Suppl. 1): S384 (1989).Google Scholar
  32. 32.
    J. H. Swan, M. C. Evans, and B. S. Meldrum, Long-term development of selective neuronal loss and the mechanism of protection by 2amino-7-phosphonoheptanoate in a rat model of incomplete forebrain ischaemia, J. Cereb. Blood Flow Metab. 8: 64 (1988).PubMedCrossRefGoogle Scholar
  33. 33.
    E. Ozyurt, D. I. Graham, G. N. Woodruff, and J. McCulloch, Protective effect of the glutamate antagonist, MK-801 in focal cerebral ischemia in the cat, J. Cereb. Blood Flow Metab. 8: 138 (1988).PubMedCrossRefGoogle Scholar
  34. 34.
    W. G. Kuhr and J. Korf, N-methyl-D-aspartate receptor involvement in lactate production following ischemia or convulsions in rats, Eur. J. Pharmacol. 155: 145 (1988).PubMedCrossRefGoogle Scholar
  35. 35.
    N. Mori and J. A. Wada, Bidirectional transfer between kindling induced by excitatory amino acids and electrical stimulation, Brain Res. 425: 45 (1987).PubMedCrossRefGoogle Scholar
  36. 36.
    D. P. Cain, K. A. Desborouch, and D. J. McKitrick, Retardation of amygdala kindling by antagonism of NMD-Aspartate and muscarinic cholinergic receptors: Evidence for the summation of excitatory mechanisms in kindling, Exp. Neurol. 100: 179 (1988).PubMedCrossRefGoogle Scholar
  37. 37.
    T. Sutula, H. Xiao-Xian, J. Cavazos, and G. Scott, Synaptic reorganization in the hippocampus induced by abnormal functional activity, Science 239: 1147 (1988).PubMedCrossRefGoogle Scholar
  38. 38.
    A. Represa, G. Le Gal La Salle, and Y. Ben-Ari, Hippocampal plasticity in the kindling model of epilepsy in rats, Neurosci. Lett. 99: 345 (1989).PubMedCrossRefGoogle Scholar
  39. 39.
    T. L. Babb, W. R. Kupfer, and J. K. Pretorius, Synaptic reorganization of mossy fibers into inner molecular layer in human epileptic fascia dentata, Neurosci. Abstr. 14: 881 (1988).Google Scholar
  40. 40.
    S. Feldblum and R. F. Ackermann, Increased susceptibility to hippocampal and amygdala kindling following intrahippocampal kainic acid, Exp. Neurol. 97: 255 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Robert F. Ackermann
    • 1
  • James L. Lear
    • 2
  1. 1.Division of Nuclear Medicine and Biophysics, Department of Radiological Sciences; Department of Neurology, Laboratory of Biomedical and Environmental Sciences and Brain Research InstituteUCLA School of MedicineLos AngelesUSA
  2. 2.Division of Nuclear Medicine, Department of RadiologyUniversity of Colorado Center for Health SciencesDenverUSA

Personalised recommendations