Skip to main content

Adenosine Involvement in Kindled Seizures

  • Chapter
Kindling 4

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 37))

Abstract

Our interests have been focused on determining the role of adenosine in the development and maintenance of kindled seizures. The results from our studies, and those of others now indicate that adenosine may have a role in terminating ongoing seizure activity and may play a principal role in the development and expression of postictal events (i.e., EEG depression, spiking, refractory period). If adenosine contributes to seizure termination, it probably also serves to limit the generalization of seizures and thus the rate of kindling. If so, its role in kindling may be even more general than indicated by current available data. Of course, no single neurotransmitter or neuromodulator is likely to be solely responsible for the kindling phenomenon. In fact, several other neurotransmitters and neuromodulators are known to influence kindling and are undoubtedly involved. These include norepinephrine, acetylcholine, glutamate, GABA and probably others as well. Studies describing these systems are well represented by several papers in this volume. However, this review is focused only on adenosine, and specifically its possible role in kindling and kindling related phenomena (i.e., postictal depression, spiking).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertson, T. E., 1986, Amygdala-kindled post-ictal inhibition: Effects of intertrial intervals onrepeated days, Exp. Neurol., 92: 197–206.

    Article  PubMed  CAS  Google Scholar 

  2. Albertson, T. E., Stark, L. G., Joy, R. M. & Bowyer, J F., 1983, Aminophylline and kindled seizures, Exp. Neurol., 81: 703–713.

    Article  PubMed  CAS  Google Scholar 

  3. Barraco, R. A., Swanson, T. H., Phillis, J. W. & Berman,R. F., 1984, Anticonvulsant effects of adenosine analogs on amygdaloid-kindled seizures in rats, Neurosci. Lett., 46: 317–322.

    Article  PubMed  CAS  Google Scholar 

  4. Bender, A. S., Wu, P. H. & Phillis, J. W., 1981, The rapid uptake and release of [3H]-adenosine by rat cerebral cortical synaptosomes, J. Neurochem., 36: 651–666.

    Article  PubMed  CAS  Google Scholar 

  5. Brodie, M. S., Lee, K., Fredholm, B. B., Stahle, L. & Dunwiddie, T. B., 1987, Central versus peripheral mediation of responses to adenosine receptor agonists: evidence against a central mode ofaction, Brain Res., 415: 323–330.

    Article  PubMed  CAS  Google Scholar 

  6. Burley, C. S. & Ferrendelli, J. A., 1984, Regulatory effects of neurotransmitters on electroshock and pentylenetetrazol seizures, Fed. Proc., 43: 2521–2524.

    PubMed  CAS  Google Scholar 

  7. Daly, J. W., 1982, Adenosine receptors: Target sites for drugs, J. Med. Chem., 25: 197–201.

    Article  PubMed  CAS  Google Scholar 

  8. Dragunow, M. & Goddard, G. V. 1984, Adenosine modulation of amygdala kindling, Exp. Neurol., 84: 654–665.

    Article  PubMed  CAS  Google Scholar 

  9. Dragunow, M., Goddard, G. V. & Laverty, R. 1985, Is adenosine an endogenous anticonvulsant?, Epilepsia, 26: 480–487.

    Article  PubMed  CAS  Google Scholar 

  10. Dunwiddie, T. V., 1980, Endogenously released adenosine regulates excitability in the in vitro hippocampus, Epilepsia, 21: 541–548.

    Article  PubMed  CAS  Google Scholar 

  11. Dunwiddie, T. V., 1985, The physiological role of adenosine in the central nervous system, Internat.Rev.of Neurobiol., 27: 63–139.

    Article  CAS  Google Scholar 

  12. Dunwiddie, T. V. & Worth, T., 1982, Anticonvulsant effects of adenosine analogs in mouse and rat, J.Pharmacol. Exp. Ther., 220: 70–76.

    PubMed  CAS  Google Scholar 

  13. Eldredge, F. L., Paydarfar, D., Scott, S. C. & Dowell, R. T., 1989, Role of endogenous adenosine in recurrent generalized seizures, Rxp. Neurol., 103: 179–185.

    Google Scholar 

  14. Engel, J. & Ackermann, R. F., 1980, Interictal EEG spikes correlate with decreased, rather than increased, epilepto-genicity in amygdala-kindled rats, Brain Res., 190: 543–548.

    Article  PubMed  Google Scholar 

  15. Fredholm, B. B., 1982, Adenosine actions and adenosine receptors after one week treatment with caffeine, Acta Physiol. Scand., 115: 283–286.

    Article  PubMed  CAS  Google Scholar 

  16. Fredholm, B. B. & Hedqvist, P., 1980, Modulation of neurotransmission by purine nucleotides and nucleosides, Biochem. Pharmacol., 29: 1635–1643.

    Article  PubMed  CAS  Google Scholar 

  17. Goddard, G. V., McIntyre, D. C. & Leech, C. K, 1960, A permanent change in brain function resulting from daily electrical stimulation, Exp. Neurol., 25: 295–330.

    Article  Google Scholar 

  18. Jarvis, M. F., 1988, Autoradiographic localization and characterization of brain adenosine receptor subtypes, In: Receptor Localization: Ligand Autoradiography, F. Leslie & C. A. Altar (eds.),Alan R. Liss, New York, pp. 95–113.

    Google Scholar 

  19. Jarvis, M. F., Jackson, R. H. & Williams, M., 1989, Autoradiographic characterization of high affinity adenosine A2 receptors in the rat brain. Brain Res., 484: 111–118.

    Article  PubMed  CAS  Google Scholar 

  20. Kairiss, E. W., Racine, R. J. & Smith, G. K., 1984, The development of the interictal spike during kindling in the rat, Brain Res., 322: 101–110.

    Article  PubMed  CAS  Google Scholar 

  21. Kuroda, Y. & Mclllwain, H., 1977, Uptake and release of [14C] adenine derivatives at beds of mammalian synaptosomes in a superfusion system, J. Neurochem., 22: 691–699.

    Article  Google Scholar 

  22. Lee, K., Schubert, P., Gribkoff, V., Sherman, B. & Lynch, G.,1982, A combined in vivo/in vitro study of the presynaptic release of adenosine derivatives in the hippocampus, J. Neurochem., 38: 80–83.

    Google Scholar 

  23. Lewin, E. & Bleck, V., 1981, Electroshock seizures in mice:Effects on brain adenosine and its metabolites, Epilepsia, 22: 577–581.

    Article  PubMed  CAS  Google Scholar 

  24. Maitre, M., Ciesielski„ L., Lehman, A., Kempf, E. and Mandel, P. 1974, Protective effect of adenosine and nicotinamide against audiogenic seizure. Biochem. Pharmacol., 23: 2807–2816.

    Article  PubMed  CAS  Google Scholar 

  25. Marangos, P. J., Boulenger, J. & Patel, J., 1984, Effects of chronic caffeine on brain adenosine receptors: regional and ontogenetic studies, Life Lai., 34: 899–907.

    Article  CAS  Google Scholar 

  26. Mucha, R. F. and Pinel, R. J., 1977, Postseizure inhibition of kindled seizures, Exp. Neurol., 54: 266–282.

    Article  PubMed  CAS  Google Scholar 

  27. Murray, T. F., 1982, Up-regulation of rat cortical adenosine receptors following chronic administration of theophylline, Europ. J, Pharmacol., 52: 113–114.

    Article  Google Scholar 

  28. Murray, T. F., Sylvester, D., Schultz, C.S. and Szot, P., 1985, Purinergic modulation of seizure threshold for pentylenetetrazol in the rat. Neuropharm. 24: 761–766.

    Article  CAS  Google Scholar 

  29. Nagata, H., Mimori, Y., Nakamura, S. & Kameyama, M., 1984, Regional and subcellular distribution in mammalian brain of the enzymes producing adenosine, J. Neurochem., 42: 1001–1007.

    Article  PubMed  CAS  Google Scholar 

  30. Park, T. S., Van Wyle, D. G. L., Rubio, R. & Berne, R.M., 1987, Interstitial fluid adenosine and saggital sinus blood flow during bicuculline-seizures in newborn piglets, J. Cereb. Blood Flow Metab., 7: 633–639.

    Article  PubMed  CAS  Google Scholar 

  31. Phillis, J. W. & Wu, P. H.,1983, Roles of adenosine and adenine nucleotides in the central nervous system, in: “Physiology and Pharmacology of Adenosine Derivatives,” J. W. Daly, Y. Kuroda, J. W. Phillis, H. Shimizu and M. Ui.,eds., Raven Press, New York, 219–236.

    Google Scholar 

  32. Pull, I. & Mcllwain, H., 1972, Metabolism of [14C]-adenine and derivatives by cerebral tissues, superfused and electrically simulated, Biochem. J., 126: 965–973.

    PubMed  CAS  Google Scholar 

  33. Pull, I. & Mcllwain, H., 1974, Rat cerebral cortex adenosine deaminase activity and its subcellular distribution, Biochem J., 144: 37–41.

    PubMed  CAS  Google Scholar 

  34. Racine, R. J., Mosher, M. & Kairiss, E. W., 1988, The role of the pyriform cortex in the generation of interictal spikes in the kindled preparation, Brain Res., 454: 251–263.

    Article  PubMed  CAS  Google Scholar 

  35. Richards, W., Chuieh, J. A., Brend, D. K., 1985, Theophylline associated seizures in children, Ann. Allerg., 54: 276–279.

    PubMed  CAS  Google Scholar 

  36. Rosen, J. B. & Berman, R. F., 1985, Prolonged postictal depression in amygdala kindled rats by the adenosine analog, L-phenylisopropyladenosine, Exp. Neurol., 90: 549–557.

    Article  PubMed  CAS  Google Scholar 

  37. Rosen, J. B. & Berman, R. F., 1987, Differential effects of adenosine analogs on amygdala, hippocampus, and caudate nucleus kindled seizures, Epilepsia, 28: 658–666.

    Article  PubMed  CAS  Google Scholar 

  38. Rubio, R., Berne, R. M., Bockman, E. L. & Curnish, R. R., 1975, Relationship between adenosine concentration and oxygen supply in rat brain, Am. J. Physiol., 228: 1896–1902.

    PubMed  CAS  Google Scholar 

  39. Sattin, A. & Rall, T. W., 1970, The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’5’monophosphate content of guinea pig cerebral cortex slices, Mol. Pharmacol., 6: 12–23.

    Google Scholar 

  40. Schultz, V. & Lowenstein, J. M., 1978, The purine nucleotide cycle:Studies of ammonia production and interconversion of adenine and hypoxanthine nucleotides and nucleotides by rat brain in situ, J.Biol. Chem., 253: 1938–1943.

    PubMed  CAS  Google Scholar 

  41. Seale, T. W., Abla, K. A., Shamim, M. T., Carney, J. M. & Daly, J. W., 1988, Dimethyl-lpropargylxanthine: A potent and selective in vivo antagonist of adenosine analogs, Life Sci., 43,:671–684.

    Google Scholar 

  42. Senba, E., Daddona, P. E., Watanabe, T., Wu, J. Y., & Nagy, J. I., 1985, Coexistence of adenosine deaminase, histidine decarboxylase and glutamate decarboxylase in hypothalamic neurons in the rat, J.Neuroscience, 5: 3393–3402.

    CAS  Google Scholar 

  43. Snyder, S. H., 1985, Adenosine as a neuromodulator, Ann. Rev. Neurosci., 8: 103–124.

    Article  PubMed  CAS  Google Scholar 

  44. Stone, T.W., 1981, Physiological roles for adenosine and adenosine 5’-triphosphate in the nervous system, Neuroscience, 6: 523–555.

    Article  PubMed  CAS  Google Scholar 

  45. Symonds, C., 1959, Excitation and inhibition in epilepsy, Brain, 82: 133–146.

    Article  Google Scholar 

  46. Szot, P., Sanders, R. C. & Murry, T. F., 1987, Theophylline-induced upregulation of Al-adenosine receptors associated with reduced sensitivity to convulsants, Neuropharmacology, 26: 1173–1180.

    Article  PubMed  CAS  Google Scholar 

  47. Trussell, L. D. & Jackson, M. B., 1987, Dependence of an adenosine-activated potassium current on GTP-binding proteins in mammalian central neurons, J.Neuroscience, 10: 3306–3316.

    Google Scholar 

  48. Turski, W. A., Cavalheiro, E. A., Ikonomidou, C., Mello, L. E., A. M., Borotolotto, Z. A. & Turski, L., 1985, Effects of aminophylline and 2-chloroadenosine on seizures produced by pilocarpine in rats: Morphological and electroencephalographic correlates, Brain Res., 361: 309–323.

    Article  PubMed  CAS  Google Scholar 

  49. Whitcomb, K., Lupica, C. R. Rosen, J. B. & Berman, R. F., 1990, Adenosine receptors modulate postictal events in amygdala-kindled rats, Epilepsy Res., in press.

    Google Scholar 

  50. Williams, M., 1984, Adenosine-a selective neuromodulator in the mammalian CNS?, Trends Neurosci., 7: 164–168.

    Article  CAS  Google Scholar 

  51. Williams, M., 1987, Purine receptors in mammalian tissues: Pharmacology and functional significance, Ann. Rev. Pharm. Toxicol., 27: 315–345.

    Article  PubMed  CAS  Google Scholar 

  52. Winn, H. R., Welsh, J. E., Bryner, C., Rubio, R. & Berne, R. M., 1979, Brain adenosine production during the initial 60 seconds of bicuculline seizures in rats, Acta Neurol. Scand., 72: 536–537.

    CAS  Google Scholar 

  53. Winn, H. R., Welsh, J. E., Rubio, R. & Berne, R. M., 1980, Changes in brain adenosine during bicucullineinduced seizures in rats: Effects of hypoxia and altered systemic blood pressure, Circ. Res., 47: 868–877.

    Google Scholar 

  54. Wybenga, M. P., Murphy, M. G. & Robertson, H. A., 1981, Rapid changes in cerebellar adenosine receptors following experimental seizures, sur. J Pharmacol., 75: 79–80.

    CAS  Google Scholar 

  55. Zetterstrom;, T., Vernet, L., Ungerstedt, U., Tossman, U., Jonzon, B. & Fredholm, B. B., 1982, Purine levels in the intact brain, Neurosci. Lett., 29: 11–115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Berman, R.F., Jarvis, M.F., Lupica, C.R. (1990). Adenosine Involvement in Kindled Seizures. In: Wada, J.A. (eds) Kindling 4. Advances in Behavioral Biology, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5796-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5796-4_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5798-8

  • Online ISBN: 978-1-4684-5796-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics