Kindling 4 pp 423-440 | Cite as

Adenosine Involvement in Kindled Seizures

  • Robert F. Berman
  • Michael F. Jarvis
  • Carl R. Lupica
Part of the Advances in Behavioral Biology book series (ABBI, volume 37)


Our interests have been focused on determining the role of adenosine in the development and maintenance of kindled seizures. The results from our studies, and those of others now indicate that adenosine may have a role in terminating ongoing seizure activity and may play a principal role in the development and expression of postictal events (i.e., EEG depression, spiking, refractory period). If adenosine contributes to seizure termination, it probably also serves to limit the generalization of seizures and thus the rate of kindling. If so, its role in kindling may be even more general than indicated by current available data. Of course, no single neurotransmitter or neuromodulator is likely to be solely responsible for the kindling phenomenon. In fact, several other neurotransmitters and neuromodulators are known to influence kindling and are undoubtedly involved. These include norepinephrine, acetylcholine, glutamate, GABA and probably others as well. Studies describing these systems are well represented by several papers in this volume. However, this review is focused only on adenosine, and specifically its possible role in kindling and kindling related phenomena (i.e., postictal depression, spiking).


Adenosine Receptor Anticonvulsant Effect Seizure Termination Endogenous Adenosine Interictal Spike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albertson, T. E., 1986, Amygdala-kindled post-ictal inhibition: Effects of intertrial intervals onrepeated days, Exp. Neurol., 92: 197–206.PubMedCrossRefGoogle Scholar
  2. 2.
    Albertson, T. E., Stark, L. G., Joy, R. M. & Bowyer, J F., 1983, Aminophylline and kindled seizures, Exp. Neurol., 81: 703–713.PubMedCrossRefGoogle Scholar
  3. 3.
    Barraco, R. A., Swanson, T. H., Phillis, J. W. & Berman,R. F., 1984, Anticonvulsant effects of adenosine analogs on amygdaloid-kindled seizures in rats, Neurosci. Lett., 46: 317–322.PubMedCrossRefGoogle Scholar
  4. 4.
    Bender, A. S., Wu, P. H. & Phillis, J. W., 1981, The rapid uptake and release of [3H]-adenosine by rat cerebral cortical synaptosomes, J. Neurochem., 36: 651–666.PubMedCrossRefGoogle Scholar
  5. 5.
    Brodie, M. S., Lee, K., Fredholm, B. B., Stahle, L. & Dunwiddie, T. B., 1987, Central versus peripheral mediation of responses to adenosine receptor agonists: evidence against a central mode ofaction, Brain Res., 415: 323–330.PubMedCrossRefGoogle Scholar
  6. 6.
    Burley, C. S. & Ferrendelli, J. A., 1984, Regulatory effects of neurotransmitters on electroshock and pentylenetetrazol seizures, Fed. Proc., 43: 2521–2524.PubMedGoogle Scholar
  7. 7.
    Daly, J. W., 1982, Adenosine receptors: Target sites for drugs, J. Med. Chem., 25: 197–201.PubMedCrossRefGoogle Scholar
  8. 8.
    Dragunow, M. & Goddard, G. V. 1984, Adenosine modulation of amygdala kindling, Exp. Neurol., 84: 654–665.PubMedCrossRefGoogle Scholar
  9. 9.
    Dragunow, M., Goddard, G. V. & Laverty, R. 1985, Is adenosine an endogenous anticonvulsant?, Epilepsia, 26: 480–487.PubMedCrossRefGoogle Scholar
  10. 10.
    Dunwiddie, T. V., 1980, Endogenously released adenosine regulates excitability in the in vitro hippocampus, Epilepsia, 21: 541–548.PubMedCrossRefGoogle Scholar
  11. 11.
    Dunwiddie, T. V., 1985, The physiological role of adenosine in the central nervous system, Internat.Rev.of Neurobiol., 27: 63–139.CrossRefGoogle Scholar
  12. 12.
    Dunwiddie, T. V. & Worth, T., 1982, Anticonvulsant effects of adenosine analogs in mouse and rat, J.Pharmacol. Exp. Ther., 220: 70–76.PubMedGoogle Scholar
  13. 13.
    Eldredge, F. L., Paydarfar, D., Scott, S. C. & Dowell, R. T., 1989, Role of endogenous adenosine in recurrent generalized seizures, Rxp. Neurol., 103: 179–185.Google Scholar
  14. 14.
    Engel, J. & Ackermann, R. F., 1980, Interictal EEG spikes correlate with decreased, rather than increased, epilepto-genicity in amygdala-kindled rats, Brain Res., 190: 543–548.PubMedCrossRefGoogle Scholar
  15. 15.
    Fredholm, B. B., 1982, Adenosine actions and adenosine receptors after one week treatment with caffeine, Acta Physiol. Scand., 115: 283–286.PubMedCrossRefGoogle Scholar
  16. 16.
    Fredholm, B. B. & Hedqvist, P., 1980, Modulation of neurotransmission by purine nucleotides and nucleosides, Biochem. Pharmacol., 29: 1635–1643.PubMedCrossRefGoogle Scholar
  17. 17.
    Goddard, G. V., McIntyre, D. C. & Leech, C. K, 1960, A permanent change in brain function resulting from daily electrical stimulation, Exp. Neurol., 25: 295–330.CrossRefGoogle Scholar
  18. 18.
    Jarvis, M. F., 1988, Autoradiographic localization and characterization of brain adenosine receptor subtypes, In: Receptor Localization: Ligand Autoradiography, F. Leslie & C. A. Altar (eds.),Alan R. Liss, New York, pp. 95–113.Google Scholar
  19. 19.
    Jarvis, M. F., Jackson, R. H. & Williams, M., 1989, Autoradiographic characterization of high affinity adenosine A2 receptors in the rat brain. Brain Res., 484: 111–118.PubMedCrossRefGoogle Scholar
  20. 20.
    Kairiss, E. W., Racine, R. J. & Smith, G. K., 1984, The development of the interictal spike during kindling in the rat, Brain Res., 322: 101–110.PubMedCrossRefGoogle Scholar
  21. 21.
    Kuroda, Y. & Mclllwain, H., 1977, Uptake and release of [14C] adenine derivatives at beds of mammalian synaptosomes in a superfusion system, J. Neurochem., 22: 691–699.CrossRefGoogle Scholar
  22. 22.
    Lee, K., Schubert, P., Gribkoff, V., Sherman, B. & Lynch, G.,1982, A combined in vivo/in vitro study of the presynaptic release of adenosine derivatives in the hippocampus, J. Neurochem., 38: 80–83.Google Scholar
  23. 23.
    Lewin, E. & Bleck, V., 1981, Electroshock seizures in mice:Effects on brain adenosine and its metabolites, Epilepsia, 22: 577–581.PubMedCrossRefGoogle Scholar
  24. 24.
    Maitre, M., Ciesielski„ L., Lehman, A., Kempf, E. and Mandel, P. 1974, Protective effect of adenosine and nicotinamide against audiogenic seizure. Biochem. Pharmacol., 23: 2807–2816.PubMedCrossRefGoogle Scholar
  25. 25.
    Marangos, P. J., Boulenger, J. & Patel, J., 1984, Effects of chronic caffeine on brain adenosine receptors: regional and ontogenetic studies, Life Lai., 34: 899–907.CrossRefGoogle Scholar
  26. 26.
    Mucha, R. F. and Pinel, R. J., 1977, Postseizure inhibition of kindled seizures, Exp. Neurol., 54: 266–282.PubMedCrossRefGoogle Scholar
  27. 27.
    Murray, T. F., 1982, Up-regulation of rat cortical adenosine receptors following chronic administration of theophylline, Europ. J, Pharmacol., 52: 113–114.CrossRefGoogle Scholar
  28. 28.
    Murray, T. F., Sylvester, D., Schultz, C.S. and Szot, P., 1985, Purinergic modulation of seizure threshold for pentylenetetrazol in the rat. Neuropharm. 24: 761–766.CrossRefGoogle Scholar
  29. 29.
    Nagata, H., Mimori, Y., Nakamura, S. & Kameyama, M., 1984, Regional and subcellular distribution in mammalian brain of the enzymes producing adenosine, J. Neurochem., 42: 1001–1007.PubMedCrossRefGoogle Scholar
  30. 30.
    Park, T. S., Van Wyle, D. G. L., Rubio, R. & Berne, R.M., 1987, Interstitial fluid adenosine and saggital sinus blood flow during bicuculline-seizures in newborn piglets, J. Cereb. Blood Flow Metab., 7: 633–639.PubMedCrossRefGoogle Scholar
  31. 31.
    Phillis, J. W. & Wu, P. H.,1983, Roles of adenosine and adenine nucleotides in the central nervous system, in: “Physiology and Pharmacology of Adenosine Derivatives,” J. W. Daly, Y. Kuroda, J. W. Phillis, H. Shimizu and M. Ui.,eds., Raven Press, New York, 219–236.Google Scholar
  32. 32.
    Pull, I. & Mcllwain, H., 1972, Metabolism of [14C]-adenine and derivatives by cerebral tissues, superfused and electrically simulated, Biochem. J., 126: 965–973.PubMedGoogle Scholar
  33. 33.
    Pull, I. & Mcllwain, H., 1974, Rat cerebral cortex adenosine deaminase activity and its subcellular distribution, Biochem J., 144: 37–41.PubMedGoogle Scholar
  34. 34.
    Racine, R. J., Mosher, M. & Kairiss, E. W., 1988, The role of the pyriform cortex in the generation of interictal spikes in the kindled preparation, Brain Res., 454: 251–263.PubMedCrossRefGoogle Scholar
  35. 35.
    Richards, W., Chuieh, J. A., Brend, D. K., 1985, Theophylline associated seizures in children, Ann. Allerg., 54: 276–279.PubMedGoogle Scholar
  36. 36.
    Rosen, J. B. & Berman, R. F., 1985, Prolonged postictal depression in amygdala kindled rats by the adenosine analog, L-phenylisopropyladenosine, Exp. Neurol., 90: 549–557.PubMedCrossRefGoogle Scholar
  37. 37.
    Rosen, J. B. & Berman, R. F., 1987, Differential effects of adenosine analogs on amygdala, hippocampus, and caudate nucleus kindled seizures, Epilepsia, 28: 658–666.PubMedCrossRefGoogle Scholar
  38. 38.
    Rubio, R., Berne, R. M., Bockman, E. L. & Curnish, R. R., 1975, Relationship between adenosine concentration and oxygen supply in rat brain, Am. J. Physiol., 228: 1896–1902.PubMedGoogle Scholar
  39. 39.
    Sattin, A. & Rall, T. W., 1970, The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’5’monophosphate content of guinea pig cerebral cortex slices, Mol. Pharmacol., 6: 12–23.Google Scholar
  40. 40.
    Schultz, V. & Lowenstein, J. M., 1978, The purine nucleotide cycle:Studies of ammonia production and interconversion of adenine and hypoxanthine nucleotides and nucleotides by rat brain in situ, J.Biol. Chem., 253: 1938–1943.PubMedGoogle Scholar
  41. 41.
    Seale, T. W., Abla, K. A., Shamim, M. T., Carney, J. M. & Daly, J. W., 1988, Dimethyl-lpropargylxanthine: A potent and selective in vivo antagonist of adenosine analogs, Life Sci., 43,:671–684.Google Scholar
  42. 42.
    Senba, E., Daddona, P. E., Watanabe, T., Wu, J. Y., & Nagy, J. I., 1985, Coexistence of adenosine deaminase, histidine decarboxylase and glutamate decarboxylase in hypothalamic neurons in the rat, J.Neuroscience, 5: 3393–3402.Google Scholar
  43. 43.
    Snyder, S. H., 1985, Adenosine as a neuromodulator, Ann. Rev. Neurosci., 8: 103–124.PubMedCrossRefGoogle Scholar
  44. 44.
    Stone, T.W., 1981, Physiological roles for adenosine and adenosine 5’-triphosphate in the nervous system, Neuroscience, 6: 523–555.PubMedCrossRefGoogle Scholar
  45. 45.
    Symonds, C., 1959, Excitation and inhibition in epilepsy, Brain, 82: 133–146.CrossRefGoogle Scholar
  46. 46.
    Szot, P., Sanders, R. C. & Murry, T. F., 1987, Theophylline-induced upregulation of Al-adenosine receptors associated with reduced sensitivity to convulsants, Neuropharmacology, 26: 1173–1180.PubMedCrossRefGoogle Scholar
  47. 47.
    Trussell, L. D. & Jackson, M. B., 1987, Dependence of an adenosine-activated potassium current on GTP-binding proteins in mammalian central neurons, J.Neuroscience, 10: 3306–3316.Google Scholar
  48. 48.
    Turski, W. A., Cavalheiro, E. A., Ikonomidou, C., Mello, L. E., A. M., Borotolotto, Z. A. & Turski, L., 1985, Effects of aminophylline and 2-chloroadenosine on seizures produced by pilocarpine in rats: Morphological and electroencephalographic correlates, Brain Res., 361: 309–323.PubMedCrossRefGoogle Scholar
  49. 49.
    Whitcomb, K., Lupica, C. R. Rosen, J. B. & Berman, R. F., 1990, Adenosine receptors modulate postictal events in amygdala-kindled rats, Epilepsy Res., in press.Google Scholar
  50. 50.
    Williams, M., 1984, Adenosine-a selective neuromodulator in the mammalian CNS?, Trends Neurosci., 7: 164–168.CrossRefGoogle Scholar
  51. 51.
    Williams, M., 1987, Purine receptors in mammalian tissues: Pharmacology and functional significance, Ann. Rev. Pharm. Toxicol., 27: 315–345.PubMedCrossRefGoogle Scholar
  52. 52.
    Winn, H. R., Welsh, J. E., Bryner, C., Rubio, R. & Berne, R. M., 1979, Brain adenosine production during the initial 60 seconds of bicuculline seizures in rats, Acta Neurol. Scand., 72: 536–537.Google Scholar
  53. 53.
    Winn, H. R., Welsh, J. E., Rubio, R. & Berne, R. M., 1980, Changes in brain adenosine during bicucullineinduced seizures in rats: Effects of hypoxia and altered systemic blood pressure, Circ. Res., 47: 868–877.Google Scholar
  54. 54.
    Wybenga, M. P., Murphy, M. G. & Robertson, H. A., 1981, Rapid changes in cerebellar adenosine receptors following experimental seizures, sur. J Pharmacol., 75: 79–80.Google Scholar
  55. 55.
    Zetterstrom;, T., Vernet, L., Ungerstedt, U., Tossman, U., Jonzon, B. & Fredholm, B. B., 1982, Purine levels in the intact brain, Neurosci. Lett., 29: 11–115.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Robert F. Berman
    • 1
  • Michael F. Jarvis
    • 2
  • Carl R. Lupica
    • 1
  1. 1.Department of PsychologyWayne State Univ.DetroitUSA
  2. 2.CIBA Geigy Corp.SummitUSA

Personalised recommendations