Kindling 4 pp 409-422 | Cite as

Midline Thalamus and Amygdaloid Kindling

  • Yoshitaka Ehara
  • Juhn A. Wada
Part of the Advances in Behavioral Biology book series (ABBI, volume 37)


Among the midline structures, the role of the corpus callosum (CC) in the kindling model of epilepsy has been extensively investigated. Findings suggest that the CC is not important for seizure development from the amygdala (AM), hippocampus (HIPP) and temporal cortex, but that it is the major, if not the exclusive, anatomical substratum for convulsive seizure bilateralization and the development of bisynchronous bisymmetrical generalized convulsion (27,28,32,41,52,53,55,56,57). As a first step in clarifing the possible role played by the midline structures in the elaboration of generalized seizure, we focused our attention on the nonspecific thalamus which is known to participate not only in the modulation of widespread electrocortical activity (6,16,37) but also in the propagation of cortical seizure discharges (23,24,50).


Secondary Site Convulsive Seizure Ibotenic Acid Seizure Development Seizure Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Akimoto, T. (1954) On the syndrome induced by electrical stimulation of the thalamus. Physiological and clinical studies on the diencephalon. Igaku Shoin, Tokyo (Japanese) (cited in ref. 4)Google Scholar
  2. 2).
    Akimoto, H., Yamaguguchi, N., Okabe, K., Nakagawa, T, Nakamura, I., Abe, K., Torii, I. and Masahashi, I. (1956) On the sleep induced through electrical stimulation on dog thalamus. Folia Psy. et. Neur. Japo., 10: 117–146Google Scholar
  3. 3).
    ) Aggleton, J.P., Burton, M.J. and Passingham, R.E. (1980) Cortical and subcortical afferents to the amygdala of the rhesus monkey(Macaca mulatta). Brain Res., 190: 347–368PubMedCrossRefGoogle Scholar
  4. 4).
    Baisden, R.H., Hoover, D.B. and Cowie, R.J. (1979) Retrograde demonstration of hippocampal afferents from the interpeduncular and renuiens nuclei. Neuro. Letters, 13: 105–109CrossRefGoogle Scholar
  5. 5).
    Baldwin, M., Frost, L.L. and Wood, C.D. (1954) Investigation of the primate amygdala: movement of the face and jaws. Neurology, 4: 586–598PubMedGoogle Scholar
  6. 6).
    Dempsey, E.W. and Morison, R.S. (1942) The production of rhythmically recurrent cortical potentials after localized thalamic stimulation. Am. J. Physiol., 135: 293–300Google Scholar
  7. 7).
    Fernandez de Molina, A. and Hunsperger, R.W. (1959) Central representation of affective reactions in forebrain and brain stem: electrical stimulation of amygdala, stria teminalis and adjacent structures. J. Physiol., 145, 251–265.PubMedGoogle Scholar
  8. 8).
    Gastaut, G.H., Naquet, R., Meyer, A., Cavanagh, J.B. and Beck, E. (1959) Experimental psychomotor epilepsy in the cat Electroclinical and anatomopathological correlations. J. Neuropath. Exp. Neurol., 18: 270–293PubMedCrossRefGoogle Scholar
  9. 9).
    Hendry, S.H.C., Jones, E.G. and Graham, J. (1979) Thalamic relay nuclei for cerebellar and certain related fiber system in the cat. J. Comp. Neurol., 185: 679–714PubMedCrossRefGoogle Scholar
  10. 10).
    Herkenham, M. (1978) The connections of the nucleus reuniens thalami: evidence for a direct thalamohippocampal pathway in the rat. J. Comp. Neurol., 177: 589–610PubMedCrossRefGoogle Scholar
  11. 11).
    ) Hess, W.R. and Brugger, M. (1943) Das subcorticale Zentrum der affektiven Abwehrreaktion. Helv. Physiol. acta, 1: 33–52Google Scholar
  12. 12).
    Hess, W.R. (1968) Hypothalamus und Thalamus. Georg Thieme Verlag, StuttgartGoogle Scholar
  13. 13).
    Hiyoshi, T. and Wada, J.A. (1988) Midline thalamic lesion and feline amygdaloid kindling. 1. Effect of lesion placement prior to kindling. Electroenceph. clin. Neurophysiol., 70: 325–338PubMedCrossRefGoogle Scholar
  14. 14).
    ) Hiyoshi, T. and Wada, J.A. (1988) Midline thalamic lesion and feline amygdaloid kindling. 2. Effect of lesion placement upon completion of primary site kindling. Electroenceph. clin. Neurophysiol., 70: 339–349PubMedCrossRefGoogle Scholar
  15. 15).
    ) Hunter, J. and Jasper, H.H. (1949) Effect of thalamic stimulation in unanaesthetized animals. Electroenceph. clin. Neurophysiol., 1: 305–324PubMedGoogle Scholar
  16. 16).
    Jasper, H.H. (1949) Diffuse projection system: the integrative action of the thalamic reticular system. Electroenceph. cli. Neurophysiol., 1: 405–420Google Scholar
  17. 17).
    ) Jasper, H.N. and Ajmone-Marsan, C. (1954) A stereotaxic atras of the diencephalon of the cat, National Research oh Canada, OttawaGoogle Scholar
  18. 18).
    Jones, E. G. and Leavitt, R.Y. (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey, J. Comp. Neurol., 154: 349–378PubMedCrossRefGoogle Scholar
  19. 19).
    Jung, R. (1957) Tierexperimentelle Grundlagen und EEG-Untersuchungen bei bewusstseinsveranderungen des Menschen ohne neurologische Erkrankungen. In “ Premier Congres International des Sciences Neurologiques. Rapports et Discussions,” Bruxelles, Acta Medica Belgica, (ref. pp. 148–179)Google Scholar
  20. 20).
    Kaitz, S.S. and Robertson, R.T. (1981) Thalamic connections with limbic cortex. 2. Corticothalamic projections. J. Comp. Neurol., 195: 527–545PubMedCrossRefGoogle Scholar
  21. 21).
    Kohler, C. and Schwarcz, R. (1983) Comparison of ibotenate and kainate neurotoxicity in rat brain: a histological study. Neuroscience, 8: 819–835.PubMedCrossRefGoogle Scholar
  22. 22).
    Kunzle, H. (1976) Thalamic projections from the precentral moter cortex in Macaca fascicularis. Brain Res., 105: 253–267PubMedCrossRefGoogle Scholar
  23. 23).
    Kusske, J.A. (1976) Interactions between thalamus and cortex in experimental epilepsy in the cat, Exp. Neurol., 50: 568–578Google Scholar
  24. 24).
    ) Kusske, J.A. and Rush, J.L. (1978) Corpus callosum and propagation of afterdischarge to contralateral cortex and thalamus. Neurology, 28: 905–912PubMedGoogle Scholar
  25. 25).
    Macchi, G., Quattrini, A., Chinzari, P., Marchesi, G., and Capocchi, G. (1975) Quantitative data on cell loss and cellular atrophy of intralaminar nuclei following cortical and subcortical lesions. Brain Res., 89: 43–59PubMedCrossRefGoogle Scholar
  26. 26).
    Macchi, G., Bentivoglio, M., D’Atena, C., Rossini, P and Tempesta, E. (1977) The cortical projections of the thalamic intralaminar nuclei restudied by means of the HRP retrograde axonal transport. Neurosci. Lett., 4: 121–126PubMedCrossRefGoogle Scholar
  27. 27).
    MaCaughran, Jr., J.A., Corcoran, M.E. and Wada, J.A. (1977) Facilitation of secondary-site amygdaloid kindling following bisection of the corpus callosum and hippocampal commissure in rats. Exp. Neurol., 57: 132–141CrossRefGoogle Scholar
  28. 28).
    MaCaugran, Jr., J.A., Corcoran, M.E. and Wada, J.A. (1978a) Role of the forebrain commissures in amygdaloid kindling in rats. Epilepsia, 19: 19–33CrossRefGoogle Scholar
  29. 29).
    MaCaugran, Jr., J.A., Corcoran, M.E. and Wada, J.A. (1978b) Role of the nonspecific thalamus in amygdaloid kindling. Exp. Neurol., 58: 471–485CrossRefGoogle Scholar
  30. 30).
    MacLean, P.D. and Delgado, J.M.R., (1953) Electrical and chemical stimulation of frontotemporal portion of limbic system in the waking animal. Electroenceph. clin. Neurophysiol., 5: 91–100Google Scholar
  31. 31).
    MacLean, P.D. (1957) Chemical and electrical stimulation of hippocampus in unrestrained animals. 1–11, Arch. Neurol. Phychiatr., Chicago, 78, 113–142Google Scholar
  32. 32).
    McIntyre, D.C. and Stuckey, G.N. (1985) Dorsal hippocampal kindling and transfer in split-brain rats. Exp. Neurol., 87: 86–95PubMedCrossRefGoogle Scholar
  33. 33).
    Mehler, W.R. (1980) Subcortical afferent connections of the amygdala in the monkey, J. Comp. Neur., 190: 733–762PubMedCrossRefGoogle Scholar
  34. 34).
    Molinari, M., Minciacchi, D., Bentivoglio, M. and Macchi, G. (1985) Efferent fibers from the moter cortex terminate bilaterally in the thalamus of rats and cats. Exp. Brain Res., 57: 305–312PubMedCrossRefGoogle Scholar
  35. 35).
    Monnir, M.,and R. Tissot, Correlated effects in behaviour and electrical brain activity evoked by stimulation of the reticular system, thalamus and rhiencephalon in the conscious animal. In “A Ciba Foundation Symposium: On the Neurological Basis of Behaviour.” London, Churchill, 1958Google Scholar
  36. 36).
    Monnir, M. and Schoenenberger, G.A. (1977) Characterization, sequence, synthesis and specificity of a delta (EEG) sleep-inducing peptide. In “Sleep 1976”, eds. W.P. Koella and P. Levin, Karger, Basel, 257–263Google Scholar
  37. 37).
    Morison, R.S. and Dempsey, E.W. (1942) A study of thalamo-cortical relations. Am. J. Physiol., 135: 281–292Google Scholar
  38. 38).
    Nakao, H. (1958) Emotional behavior produced by hypothalamic stimulation. Amer. J. Physiol., 194, 411–418PubMedGoogle Scholar
  39. 39).
    Niimi, K., Niimi, N. and Okada, Y. (1978) Thalamic afferents to the limbic cortex in the cat studied with the method of retrograde axional transport of horseradish peroxidase. Brain Res., 145: 225–238PubMedCrossRefGoogle Scholar
  40. 40).
    Niimi, K., Matsuoka, H., Aisaki, T. and Okada, Y. (1981) Thalamic afferents to the prefrontal cortex in the cat traced with horseradish peroxidase. J. Hirnforsch., 22: 221–241PubMedGoogle Scholar
  41. 41).
    Okamoto, M. (1982) An experimental study of temporal cortical kindling in cats: the effects of midlinebisection on seizure generalization mechanism. Psychiat. Neurol. Jpn., 84: 48–67Google Scholar
  42. 42).
    Ottersen, O.P. and Ben-Ari, Y. (1979) Afferent connections to the amygdaloid complex of the rat and cat. J. Comp. Neur. 187: 401–424PubMedCrossRefGoogle Scholar
  43. 43).
    Rinvik, E. (1968) The corticothalamic projection from the pericruciate and coronal gyri in the cat. An experimental study with silver-impregnation methods. Brain Res., 10: 79–119PubMedCrossRefGoogle Scholar
  44. 44).
    Robertson, R.T. and Kaitz, S.S. (1981) Thalamic connections with limbic cortex. 1. Thalamocortical projections. J. Comp. Neurol., 195: 501–525PubMedCrossRefGoogle Scholar
  45. 45).
    Sakai, S.T. and Tanaka, Jr., D. (1984) Contralateral corticothalamic projections from area 6 in the racoon. Brain Res., 299: 371–375PubMedCrossRefGoogle Scholar
  46. 46).
    Scheibel, M.E. and Scheibel, A.B. (1967) Structural organization of nonspecific thalamic nuclei and their projection toward cortex. Brain Res., 6: 60–94PubMedCrossRefGoogle Scholar
  47. 47).
    Schoenenberger, G.A. (1984) Characterization, properties and multivariate functions of delta-sleep-inducing peptide (DSIP). Eur. Neurol., 23: 321–345PubMedCrossRefGoogle Scholar
  48. 48).
    Sterman, M.B. and Shouse, M.N. (1981) Kindling and sleep: a new direction in the search for mechanism. J.A. Wada. Ed Kindling 2. Ravan Press, New York, 137–148Google Scholar
  49. 49).
    Ursin, H. and Kaada, B.R. (1960) Functional localization within the amygdaloid complex in the cat. EEG Clin. Neurophysiol., 12, 1–20CrossRefGoogle Scholar
  50. 50).
    Wada, J.A. and Cornelius, L. (1960) Functional alteration of deep structures in cats with chronic focal cortical irritative lesion. Arch. Neurol., 3: 425–447PubMedCrossRefGoogle Scholar
  51. 51).
    Wada, J.A. and Sato, M. (1974) Generalized convulsive seizures induced by daily electrical stimulation of the amygdala in cats. Neurology, 24: 565–574PubMedGoogle Scholar
  52. 52).
    Wada, J.A. and Sato, M. (1975) The generalized convulsive seizure state induced by daily electrical stimulation of the amygdala in split-brain cats. Epilepsia, 16: 417–430PubMedCrossRefGoogle Scholar
  53. 53).
    Wada, J.A., Mizoguchi, T. and Kornai, S. (1981) Cortical motor activation in amygdaloid kindling: observations in nonepileptic rhesus monkeys with anterior two-thirds callosal bisection. In: J.A. Wada Kindling 2 Ravan Press, New York, 235–248Google Scholar
  54. 54).
    Wada, J.A. (1982) Secondary cerebral functional alterations examined in the kindling model of epilepsy. In: A. Mayersdorf and R.P. Schmidt, Secondary Epileptogenesis. Ravan Press, New York, 45–87Google Scholar
  55. 55).
    Wada, J.A., Nakashima, T. and Kaneko, Y. (1982) Forebrain bisection and feline amygdaloid kindling. Epilepsia, 23: 521–530PubMedCrossRefGoogle Scholar
  56. 56).
    Wada, J.A. and Mizoguchi, T. (1984) Limbic kindling in the forebrain bisected photosensitive baboon, Papio papio. Epilepsia 25: 278–287PubMedCrossRefGoogle Scholar
  57. 57).
    Wada, J.A. and Kornai, S. (1985) Effect of anterior two-thirds callosal bisection upon bisymmetrical and bisynchronous generalized convulsions kindled from amygdala in epileptic baboon, Papio papio. In: A.G. Reeves, Epilepsy and the Corpus Callosum. Plenum Press, New York, 75–97CrossRefGoogle Scholar
  58. 58).
    Youmans, J.R. (1956) Experimental production of seizures in the Macaque by temporal lobe lesions. Neurology, 6: 179–186PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Yoshitaka Ehara
    • 1
  • Juhn A. Wada
    • 1
  1. 1.Divisions of Neurosciences and NeurologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations