Kindling 4 pp 383-395 | Cite as

Erosion of Kindled Epileptogenesis and Kindling-Induced Long-Term Seizure Suppressive Effect in Primates

  • Juhn A. Wada
Part of the Advances in Behavioral Biology book series (ABBI, volume 37)


Repeated electrical stimulation of the brain can result in the development of spontaneous recurrent seizures in dogs, cats and rats (10, 49, 51) or status epilepticus in dogs and cats (1, 49). In primates, Delgado (7) found that repeated electrical brain stimulation results in a lasting change in the EEG signature of induced seizure. Subsequently, the critical conditions necessary for progressive changes induced by repeated electrical brain stimulation were identified by Goddard who baptized it “the kindling phenomenon” (15, 16). His original studies were primarily in rodents, but he was the first to extend the observation to primates, with the specific intention of verifying the validity of the kindling phenomenon across the species. Although considerable difficulty was encountered in identifying the optimal parameters of stimulation, and despite considerable variation in the results obtained, he was able to conclude that unilateral or bilateral clonic seizure can be induced after six months of stimulation„ Furthermore, once established, a rest interval of eight weeks did not weaken the kindled response in the rhesus monkey. In the meantime, spontaneous seizure development was being documented in nonepileptic patients who underwent either a series of ECTs (33), or prolonged intracerebral electrical stimulation (24, 35). All these findings strongly suggest that, in response to repeated electrical brain stimulation, the progressive development and acquisition of lasting seizure suceptibility which culminate in the emission of spontaneous seizures are the likely biological principles operating in all mammalian species, including man.


Rest Interval Secondary Site Seizure Susceptibility Spontaneous Seizure Spontaneous Recurrent Seizure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alonso-De Florida, F. & Delgado, J.M.R. (1958) Lasting behavioural and EEG changes in cat induced by prolonged stimulation of the amygdala. Am. J. Physiol. 193: 223–229Google Scholar
  2. 2.
    Baba, H., Ono, K. & Wsta, J.A. (1987) Transcallosal response in the chronic baboon preparation, Papio papio. II. Effect of premotor cortical kindling. E ectroenceph. clin. Neurophysiol. 67 /6: 564–569CrossRefGoogle Scholar
  3. 3.
    Baba, H., Sakai, S. & Wada, J.A. (1986) Premotor (area 6) cortical kindling. IN: KINDLING 3, J.A. Wada (Ed). Raven Press, NY, pp 447–469Google Scholar
  4. 4.
    Cherlow, D.G., Dymond, A.M., Crandall, P.H., Walter, R.D. & Serafetinides, E.A. (1977) Evoked response and afterdischarge thresholds to electrical stimulation in temporal lobe epilepsy. Arch. Neurol. 34: 527–531Google Scholar
  5. 5.
    Corcoran, M.E., Cain, D.P. & Wada, J.A. (1984) Amygdaloid kindling in Papio cynocephalus and subsequent recurrent spontaneous seizures. Folia Psychiat. et Neurol. Jpn. 38 /2: 151–158Google Scholar
  6. 6.
    deJonge, M. & Racine, R.J. (1987) The development and decay of kindling-induced increases in paired-pulse depression in the dentate gyrus. Br. Res. 412:318–328CrossRefGoogle Scholar
  7. 7.
    Delgado, J.M.R. (1959)TP7nged stimulation of brain in awake monkeys. J. Neurophysiol. 22:458–475PubMedGoogle Scholar
  8. 8.
    Dragunow, M. & Robertson, H.A. (1987) Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature 329: 441–442PubMedCrossRefGoogle Scholar
  9. 9.
    Dragunow, M., Robertson, H.A. & Robertson, G.S. (1988) Amygdala kindling and c-fos portein(s). Exp. Neurol. 102: 261–263Google Scholar
  10. 10.
    Engel, J.Jr., Rausch, R., Lieb, J.P., Kuhl, D.E. & Crandall, P.H. (1981) Correlation of criteria used for localizing epileptic foci in patients considered for surgical therapy of epilepsy. Ann. Neurol. 9: 215–224PubMedCrossRefGoogle Scholar
  11. 11.
    Essig, C.F., Grose, M.E. & Williamson, E.L. (1961) Reversible elevation of electroconvulsive threshold and occurrence of spontaneous convulsions upon repeated electrical stimulation of the cat brain. Exp. Neurol. 4: 37–47Google Scholar
  12. 12.
    Funabashi, T., Sasaki, H. & Kimura, F. (1988) Intraventricular injection of antiserum to nerve growth factor delays the development of amygdaloid kindling Br. Res. 458: 132–136CrossRefGoogle Scholar
  13. 13.
    Gall, C.M. & Jackson, P.J. (1989) Limbic seizures increase neuronal production of messenger RNA for nerve growth factor. Science 245: 758–761PubMedCrossRefGoogle Scholar
  14. 14.
    Geinisman, Y., Morrell, F. & de Toledo-Morrell, L. (1988) Remodelling of synaptic architecture during hippocampal ‘kindling’. Proc. Nat’l. Acad. Sci. USA 85: 3260–3264CrossRefGoogle Scholar
  15. 15.
    Goddard, G.V. (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021PubMedCrossRefGoogle Scholar
  16. 16.
    Goddard, G.V., McIntyre, D.C. & Leech, C.K. (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25: 295–330Google Scholar
  17. 17.
    Goddarc. V., Dragunow, M., Maru, E. & MacLeod, E.K. (1986) Kindling and the forces that oppose it. IN: The Limbic System: Functional Organization and Clinical Disorders B.K. Doane & K.E. Livingston ( FdsYRaven Press, NY pp 95–108Google Scholar
  18. 18.
    Goldensohn, E.S. (1984) The relevance of secondary epileptogenesis to the treatment of epilepsy: Kindling and the mirror focus. Epilepsia 25: 5156–5168Google Scholar
  19. 19.
    Hiyoshi, T. & Wada, J.A. Feline amygdaloid kindling and the sleep-waking pattern: Observations on daily 22-hour polygraphic recording. Epilepsia (In apress).Google Scholar
  20. 20.
    Hiyoshi, T. & Wada, J.A.. Failure of nine-month phenobarbital administration to reverse amygdaloid kindled seizure susceptibility in cats. (Submitted)Google Scholar
  21. 21.
    Lowrie, M.B. & Ettlinger, G. (1980) The development of independent secondary “mirror” discharge in the monkey: failure to replicate earlier findings. Epilepsia 21: 25–30PubMedCrossRefGoogle Scholar
  22. 22.
    Mayersdorf, A. & Schmidt, R.P. (1982) Secondary Epileptogenesis Raven Press, New YorkGoogle Scholar
  23. 23.
    McIntyre, D.C. & Goddard, G.V. (1973) Transfer, interference and spontaneous recovery of convulsions kindled from the rat amygdala. Electroenceph. clin. Neurophysiol. 35: 533–543Google Scholar
  24. 24.
    Monroe, R.R. (1970) Episodic behavioural disorders: A psycho-dynamic and neurophysiologic analysis. Harvard University Press, C-LiTEridge, Mass pp. 76–77Google Scholar
  25. 25.
    Morita, K., Okamoto, M., Seki, K. & Wada, J.A. (1985) Suppression of amygdala -kindled seizure in cats by enhanced GABAergic transmission in the substantia Innaminata. Exp. Neurol. 89: 225–236Google Scholar
  26. 26.
    Mori, N. & Wada, J.A. (1989) Suppression of amygdaloid kindled convulsion following unilateral injection of 2-amino-7phosphone-heptanoic acid (2LAPH) into the substantia innominata. Br. Res. 486: 141–146CrossRefGoogle Scholar
  27. 27.
    Morgan, J.I., Cohen, D.R., Hempstead, J.L. & Curran, T. (1987) Mapping patterns of c-fos expression in the central nervous system after seizures. Science 237: 192–197PubMedCrossRefGoogle Scholar
  28. 28.
    Morrell, F. (1985) Secondary epitogenesis in man. Arch. Neurol. 42: 318–335Google Scholar
  29. 29.
    Morrell, F. (1989) Varieties of human secondary epileptogenesis. J. Clin. Neurophysiol. 6: 227–275PubMedCrossRefGoogle Scholar
  30. 30.
    Morrell, F., Wada, J.A., & Engel, J.Jr. (1987) Potential relevance of kindling and secondary epileptogenesis to the consideration of surgical treatment for epilepsy. IN: Surgical Treatment of the Epilepsies J. Engel, Jr. ( Ed) Raven Press, NY pp 701–707Google Scholar
  31. 31.
    Okamoto, M. & Wada, J.A. (1984) Reversible suppression of amygdaloid kindled seizures following unilateral gabaculine injection into the substantia nigra. Br. Res. 305: 389–392CrossRefGoogle Scholar
  32. 32.
    Represa, A., Le Gal La Salle, G. & Ben-Ari, Y. (1989) Hippocampal plasticity in the kindling model of epilepsy in rats. Neurosci. Letts. 99: 345–350Google Scholar
  33. 33.
    Sato, M. & Wada, J.A. (1975) Review on the kindling preparation: A new experimental model of epilepsy. Brain & Nerve 27: 257–273Google Scholar
  34. 34.
    Seino, M. & Wada, J.A. (1964) Chronic focal cortical epileptogenic lesion and behaviour: Comparison of behavioural performance in monkeys with either epileptogenic or ablatic unilateral lesion. Epilepsia 5: 321–333PubMedCrossRefGoogle Scholar
  35. 35.
    Sranka, M., Sedlack, P., & Nadvornik, P. (1977) Observation of the kindling phenomenon in treatment of pain by stimulation in the thalamus. IN: Neurosurgical Treatment in Psychiatry, Pain & Epilepsy. W.H. Sweet, S. Obrador & J.G. Martin-Rodriguez (Eds), University Park Press, Baltimore pp. 651–654Google Scholar
  36. 36.
    Sutula, T., Xiao-Xian, H., Cavazos, J. & Scott, G. (1988) Synaptic reorganization in the hippocampus induced by abnormal functional activity. Science 239: 1147–1150PubMedCrossRefGoogle Scholar
  37. 37.
    Uemura, S. & Wada, J.A. (1981) Seizure predisposition and species. Epilepsia 22: 232Google Scholar
  38. 38.
    Wada, J.A. (1977) Pharmacological prophylaxis in the kindling model of epilepsy. Arch. Neurol. 34:389–395PubMedCrossRefGoogle Scholar
  39. 39.
    Wada, J.A. & Mizoguchi, T. (1984) Limbic kindling in the forebrain-bisected photosensitive baboon, Papio papio. Epilepsia 25 /3: 278–287PubMedCrossRefGoogle Scholar
  40. 40.
    Wada, J.A., Mizoguchi, T., & Kcmai, S. (1981) Cortical motor activation in amygdaloid kindling: Observations in nonepileptic rhesus monkeys with anterior 2/3 callosal bisection. IN: KINDLING 2, J.A. Wada (Ed) Raven Press, NY, pp 235–248Google Scholar
  41. 41.
    Wada, J.A., Sato, M. & Corcoran, M.E. (1974) Persistent seizure susceptibility and recurrent spontaneous seizures in kindled cats. Epilepsia 15: 465–478PubMedCrossRefGoogle Scholar
  42. 42.
    Wada, J.A., Mizoguchi, T. & Osawa, T. (1978) Secondary generalized convulsive seizures induced by daily amygdaloid stimulation in the rhesus monkey. Neurology 28: 1026–1036PubMedGoogle Scholar
  43. 43.
    Wada, J.A., Mizoguchi, T. & Kornai, S. (1985) Epileptogenesis in the orbital and mesial frontal cortical area of the subhuman primate. Epilepsia 26: 472–479PubMedCrossRefGoogle Scholar
  44. 44.
    Wada, J.A. & Okamoto, M. (1986) The differential role of mesial and lateral frontal cortices in amygdaloid kindling and kindled seizures in Senegalese baboons, Papio papio. IN: KINDLING 3, J.A. Wada (Ed). Raven Press, NY, pp 409–428Google Scholar
  45. 45.
    Wada, J.A. & Osawa, T. (1976) The generalized convulsive seizure state induced by daily electrical amygdaloid stimulation in Senegalese baboons, Papio papío. Neurology 26: 273–286PubMedGoogle Scholar
  46. 46.
    Wada, J.A., Osawa, T. & Mizoguchi, T. (1975) Recurrent spontaneous seizure state induced by prefrontal kindling in the Senegalese baboon, Papio papio. Can. J. Neurol. Sci. 2: 477–495PubMedGoogle Scholar
  47. 47.
    Wada, J.A. & Sato, M. (1974) Generalized connsive seizures induced by electrical stimulation of the amygdala in cats: Correlative electrographic and behavioural features. Neurology 24: 565–574PubMedGoogle Scholar
  48. 48.
    Wada, J.A., Sato, M., Wake, A., Green, J.R. & Troupin, A.S. (1976) Prophylactic effects of phenytoin, phenobarbital and carbamazepine examined in kindling cat preparations. Arch. Neurol. 33: 426–434Google Scholar
  49. 49.
    Watanabe, E. (1936) Experimental study on pathogenesis of epileptic convulsive seizures. Psychiat. et Neurol. Jpn. 40: 1–36Google Scholar
  50. 50.
    Wilder, B.J. (1972) Projection phenomena and secondary epileptogenesis mirror foci. IN: Experimental Models of Epilepsy. D. Purpura, et al. ( Fels) Raven Press, New York. Pp 85–112Google Scholar
  51. 51.
    Wurz, R.H. & Olds, J. (1963) Amygdaloid stimulation and operant reinforcement in the rat. J. Comp. Physiol. Psychol. 56: 941–949CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Juhn A. Wada
    • 1
  1. 1.Divisions of Neurosciences and NeurologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations