Kindling 4 pp 329-341 | Cite as

Kindling, Anxiety and Limbic Epilepsy: Human and Animal Perspectives

  • Robert Adamec
Part of the Advances in Behavioral Biology book series (ABBI, volume 37)


Recent clinical data in humans suggests that two types psychopathology associated with human epilepsy are anxiety and depression1,2. There is little agreement, however, regarding which type of epilepsy creates the greatest risk for interictal psychopathological complications2. Epileptics experience many life disturbances (such as illness, family and employment problems3, which are suspected precipitants of anxiety and depressive disorders4,5. Since there is no clear association between type of seizure disorder and risk for anxiety and depression, it is possible that the interictal psychopathology is a response to the stresses of being an epileptic.


Defensive Behavior Defensive Response Recurrent Inhibition Limbic Seizure Post Tetanic Potentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. R. Trimble and M. M. Perez, Quantification of psychopathology in adult patients with epilepsy, in: “Epilepsy and behavior ’79,” B. M. Kulig, H. Meinardi, G. Stores, ed. Swets and Zeitlinger, Lisse (1980).Google Scholar
  2. 2.
    B. P. Hermann, and S. Whitman, Behavioral and personality correlates of epilepsy: a review, methodological critique, and conceptual model, Psych. Bull. 95: 451–497 (1984).CrossRefGoogle Scholar
  3. 3.
    R. J. Mittan and G. E. Locke, The other half of epilepsy: psychosocial problems, Urban Health. (Jan-Feb): 38–39 (1982).Google Scholar
  4. 4.
    E. S. Paykel, Recent life events in the development of depressive disorder, in: “The Psychobiology of depressive disorders: Implications for the effects of stress,” E. S. Paykel ed., Academic Press, New York, (1979).Google Scholar
  5. 5.
    T. Takeuchi, T. Takahashi, H. Kotsuki, S. Aizawa, S. Maruyama and K. Kodama, Life events related to the inception of anxiety neurosis, Jap. J. Psychiat. Neurol. 40 (2): 137–142, (1986).Google Scholar
  6. 6.
    R. Adamec, Kindling, anxiety and personality, in: “The Clinical Relevance of Kindling,” M. R. Trimble and T. G. Bolwig, eds., John Wiley and Sons, Chichester, (1989) (in press).Google Scholar
  7. 7.
    R. Adamec and C. Stark-Adamec, Limbic kindling and animal behavior–Implications for human psychopathology associated with complex partial seizures, Biol. Psychiat. 18 (2): 269–293 (1983).PubMedGoogle Scholar
  8. 8.
    R. Adamec, Does kindling model anything clinically relevant, Biol. Psychiat. (accepted for publication) (1990).Google Scholar
  9. 9.
    R. Adamec, Normal and abnormal limbic system mechanisms of emotive biasing, in: “Limbic Mechanisms,” K. E. Livingston and O. Hornykiewcz, eds.,), Plenum Press, New York, (1978).Google Scholar
  10. 10.
    R. Adamec and C. Stark-Adamec, Partial kindling and emotional bias in the cat: Lasting after effects of partial kindling of the ventral hippocampus I Behavioral Changes, Behay. Neur. Biol. 38: 205–22 (1983).CrossRefGoogle Scholar
  11. 11.
    N. Griffin, N., J. Engel and R. Sandler, Ictal and enduring interictal disturbances in emotional behavior in an animal model of temporal lobe epilepsy, Brain Res. 400: 360–364 (1987).CrossRefGoogle Scholar
  12. 12.
    A. Siegel, Anatomical and functional differentiation within the amygdala, in: Modulation of Sensorimotor Activity During Alterations in Behavioral States.,“ R. Sandler, ed., Allan R. Liss, New York (1984).Google Scholar
  13. 13.
    P. Skolnick, P. Ninan, T. Insel, J. Crawley and S. Paul, A novel chemically induced animal model of human anxiety Psychopath. 17: 25–36 (1984).CrossRefGoogle Scholar
  14. 14.
    H. Maeda, Effects of psychotropic drugs upon the hypothalamic rage responses in cats Fol. Psychiat. Neurol. Jap. 30: 539–546 (1976).Google Scholar
  15. 15.
    L. Wolgin, and S. Servidio Disinhibition of predatory attack in kittens by oxazepam, Soc. Neurosci. Abs. 5: 2282–0 (1979).Google Scholar
  16. 16.
    S. L. Stoddard, V. K. Bergdall, D. W. Towsend and B. E. Levin, Plasma catecholamine associate with hypothalamically-elicited defense behavior, Physiol. Behay. 36: 867–873 (1986).CrossRefGoogle Scholar
  17. 17.
    S. L. Stoddard, V. K. Bergdall, P. S. Conn and B. E. Levin, Increases in plasma catecholamines during naturally elicited defensive behavior in the cat, J. Auton. Nerv. Sys., 19: 189–197 (1987).Google Scholar
  18. 18.
    M-H. Thiebot, P. Soubrie and D. Sanger, Anxiogenic properties of beta-CCE and FG 7142: a review of promises and pitfalls. Psychopharm. 94: 452–463 (1988).CrossRefGoogle Scholar
  19. 19.
    R. Dorrow, R. Horowski, F. Paschelke, M. Amin and C. Braestrup, Severe anxiety induced by FG-7142, a carboline ligand for benzodiazepine receptors, Lancet 2: 98–99 (1983).CrossRefGoogle Scholar
  20. 20.
    J. N. Crawley, P. T. Ninan, D. Pickar, G. P. Chrousos, M. Linnoila, P. Skolnick and S. M. Paul, Neuropharmacological antagonism of the carboline-induced “anxiety” response in rhesus monkeys, J. Neurosci. 5: 477–485 (1985).PubMedGoogle Scholar
  21. 21.
    C. Braestrup, R. Schmiechen, G. Neef, M. Nielsen and E. N. Peterson, Interaction of convulsive ligands with benzodiazepine receptors, Science 216: 1241–1242 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    H. Mohler and J. G. Richards, Agonist and antagonist of benzodiazepine receptor interactions in vitro, Nature. 294: 763–765 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    R. Adamec, FG-7142 and “Anxiety” in the cat: Acute and Lasting after effects. Europ. J. Pharmacol., (accepted for for publication and under revision) (1990).Google Scholar
  24. 24.
    R. J. Andrew, The information potentially available in mammal displays, in: “Non-verbal communication,” R. A. Hinde, ed., Cambridge University Press, London (1972).Google Scholar
  25. 25.
    A. Ableitner and A. Herz Changes in local cerebral glucose utilization induced by the beta-carbolines FG 7142 and DMCM reveal brain structures involved in the control of anxiety and seizure activity. J. Neurosci. 7: 1047–1055 (1987).PubMedGoogle Scholar
  26. 26.
    H. J. Little, D. J. Nutt and S. C. Taylor, Kindling and withdrawal changes at the benzodiazepine receptor, J. Psychopharmacol. 1: 35–46 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    M. G. Corda, O. Giorgi, F. Gatta, and G. Biggio, Long-lasting proconflict effect induced by chronic administration of the beta-carboline derivative FG 7142. Neurosci. Lett. 62: 237–240 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    é. Ongini, Behavioral and EEG effects of benzodiazepines and their antagonists in the cat. in: “Benzodiazepine recognition site ligands: Biochemistry and pharmacology,” G. Biggio and E. Costa Costa, eds., Raven Press, New York (1983).Google Scholar
  29. 29.
    R. Adamec and C. Stark-Adamec, Partial kindling and emotional bias in the cat: Lasting after effects of partial kindling of the ventral hippocampus. II. Physiological changes, Behay. Neur. Biol. 38: 223–239 (1983).CrossRefGoogle Scholar
  30. 30.
    S. M. Pellis, D. P. O’Brien, V. C. Pellis, P. Teitelbaum, D. L. Wolgin and S. Kennedy, Escalation of feline predation along a gradient from avoidance through “play” to killing. Behay. Neurosci. 102 (5): 760–777 (1988).CrossRefGoogle Scholar
  31. 31.
    J. T. Murphy, The role of the amygdala in controlling hypothalamic output. in: “The neurobiology of the amygdala,” B. E. Eleftheriou, ed., Plenum Press, New York (1972).Google Scholar
  32. 32.
    H. Maeda and K. Hirata, Two-stage amygdaloid lesions and hypothalamic range: A method useful for detecting functional localization, Physiol. Behay. 21: 529–530 (1978).CrossRefGoogle Scholar
  33. 33.
    R. Adamec, R. The role of the amygdala and ventromedial hypothalamus in partial kindling induced increases in defensiveness in the cat, Agg. Behay. (1989) ( Accepted for publication).Google Scholar
  34. 34.
    R. E. Adamec and C. Stark-Adamec, Partial kindling and behavioral change-Some rules governing behavioral outcome of repeated limbic seizures, in: “Kindling 3”, J.A. Wada, ed., Raven Press, New York (1986).Google Scholar
  35. 35.
    R. Adamec, The relationship of the amygdala and the bed nucleus of the stria terminalis of the cat: An evoked potential and single cell study. Behay. Neur. Biol. (in press) (1989).Google Scholar
  36. 36.
    R. Adamec and C. Stark-Adamec, Limbic Control of Aggression, Neuro-Psychopharm. Biol. Psychiat. 7: 505–512 (1983).Google Scholar
  37. 37.
    R. Adamec, The effects of partial kindling on inhibition in the cat ventral hippocampus, (in preparation) (1989).Google Scholar
  38. 38.
    L. P. Tuff, R. J. Racine and R. Adamec, The effects of kindling on GABA-mediated inhibition in the dentate gyrus of the rat I Paired-pulse depression, Brain Res., 277: 79–90 (1983).PubMedCrossRefGoogle Scholar
  39. 39.
    J. Kapur, J. L. Stringer and E. W. Lothman, Evidence that repetitive seizures in the hippocampus cause a lasting reduction of GABAergic inhibition, J. Neurophysiol. 61: 417–426 (1989).PubMedGoogle Scholar
  40. 40.
    P. G. Gluchankov, V. S. Vorobyov and V. G. Skrebitsky, Influence of carboline derivative FG7142 on the inhibition in hippocampal sections. Bull. Exp. Biol. Med. Moscow 12: 724 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Robert Adamec
    • 1
  1. 1.Departments of Psychology and Basic Medical ScienceMemorial UniversitySt. John’sCanada

Personalised recommendations