Kindling 4 pp 313-327 | Cite as

Basic Mechanisms Underlying Seizure-Prone and Seizure-Resistant Sleep and Awakening States in Feline Kindled and Penicillin Epilepsy

  • M. N. Shouse
  • A. King
  • J. Langer
  • K. Wellesley
  • T. Vreeken
  • K. King
  • J. Siegel
  • R. Szymusiak
Part of the Advances in Behavioral Biology book series (ABBI, volume 37)


Epilepsy is a chronic neurological disorder which is manifested at some times and masked at others. Sleep-waking state physiology is one of the most well documented factoKs affecting the clinical expression or suppression of human epilepsy1,2. Specifically, non-rapid-eye-movement (NREM) sleep and the gradual process of awakening from NREM sleep are the most vulnerable periods for seizures, especially convulsions. Moreover, the type of epilepsy is an important consideration in the timing of convulsions. Temporal lobe epilepsy with secondary generalized convulsions is the most common pure sleep epilepsy, with convulsions occurring in NREM or the transition from NREM to rapid-eye-movement (REM) sleep in nearly 60% of the patients2. In contrast, over 90% of patients with primary generalizgd, “petit mal” epilepsy display convulsions exclusively after awakening2. Finally, type of epilepsy is not a factor in the suppression of seizures during REM sleep. REM sleep is the most anti-epileptic state in the sleep-wake cycle for all generalized electrographic (EEG) and clinical seizures1.


Temporal Lobe Epilepsy NREM Sleep Posterior Hypothalamus Seizure Susceptibility Spontaneous Seizure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.N. Shouse, Seizures and epilepsy during sleep, in: “Principles and Practice of Sleep Medicine,” M.H. Kryger, T. Roth and W.C. Dement, eds., Saunders, Philadelphia, 1989.Google Scholar
  2. 2.
    D. Janz, The grand mal epilepsies and the sleeping-waking cycle, Epilepsia 3: 69 (1962).PubMedCrossRefGoogle Scholar
  3. 3.
    J.A. Wada and S. Sato, Generalized convulsive seizures induced by daily stimulation of the amygdala in cat: correlative electroencephalographic and behavioral features, Neurology 24: 565 (1974).PubMedGoogle Scholar
  4. 4.
    P. Gloor, Generalized epilepsy with spike-wave discharge: A reinterpretation of its electrographic and clinical manifestations, Epilepsia 20: 571 (1977).CrossRefGoogle Scholar
  5. 5.
    S.L. Moshe, E.F. Sperber and B.J. Albala, Kindling as a model of epilepsy in developing animals, in: “Kindling and Synaptic Plasticity: The legacy of Graham Goddard,” F. Morrell, ed., Dirkhauser, Boston, in press.Google Scholar
  6. 6.
    M.N. Shouse, Differences between two feline epilepsy models in sleep and waking state disorders, state dependency of seizures and seizure susceptibility: Amygdala kindling interferes with systemic penicillin epilepsy, Epilepsia 28: 399 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    W.J. West, On a peculiar form of infantile convulsion, Lancet 1: 724 (1841).CrossRefGoogle Scholar
  8. 8.
    M. Steriade, Ascending control of motor cortex responsiveness, Electroenceph. Clin. Neurophysiol. 26: 25 (1969).CrossRefGoogle Scholar
  9. 9.
    M. Steriade, Ascending control of thalamic and cortical responsiveness, Int. Rev. Neurobiol. 12: 87 (1970).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Shouse, Thalamocortical mechanisms of state-dependent seizures during amygdala kindling and systemic penicillin epilepsy in cats, Brain Res. 425: 198 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Shouse, State disorders and state dependent seizures in amygdala kindled cats, Exp. Neurol. 92: 601 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    J. M. Siegel, Brainstem mechanisms generating REM sleep, in: “Principles and Practice of Sleep Medicine,” M.H. Kryger, T. Roth and W.C. Dement, eds., Saunders, Philadelphia, 1989.Google Scholar
  13. 13.
    J.A Wada and M. Sato. Effects of unilateral lesions in the midbrain reticular formation on kindled amygdaloid convulsions in cats. Epilepsia 16: 693 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    M.N. Shouse and M.B. Sterman. Sleep pathology in experimental epilepsy, in: “Sleep and Epilepsy,” M.B. Sterman, M.N. Shouse and P. Passouant, eds., Academic Press, New York, 1982.Google Scholar
  15. 15.
    M.N. Shouse and M.B. Sterman, Changes in seizure susceptibility, sleep time and sleep spindles following thalamic and cerebellar lesions, Electroenceph. Clin. Neurophysiol. 46: 1 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Mullan, G. Valiati, J. Karasick and M. Mailias, Thalamic lesions for the control of epilepsy, Arch. Neurol. 16: 277 (1967).PubMedCrossRefGoogle Scholar
  17. 17.
    W.R Hess, Diencephalon-Autonomic and Extrapyramidal Functions, “Grune and Stratton, New York, 1954. Consciousness Symposium” J.F. Freshaye, ed., Blackwell, Oxford, 1954.Google Scholar
  18. 18.
    R. S. Szymusiak, T. Iriye and D. J. McGinty, Sleep-waking discharge of neurons in the posterior lateral hypothalamic area of cats. Brain Res. Bull. In Press, 1989.Google Scholar
  19. 19.
    C.B. Saper, Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections, J. Comp. Neurol. 237: 21, (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    M.N. Shouse, J.M. Siegel, M.F. Wu, R.S. Szymusiak and A.R. Morrison. Mechanisms of seizure suppression during rapid-eye-movement (REM) sleep in cats. Brain Res., In Press, 1989.Google Scholar
  21. 21.
    C.H. Vanderwolf and T.E. Robinson, Reticulocortical activity and behavior: A critique of the arousal theory and a new synthesis (with commentaries), Behay. Brain Sci. 4: 459 (1981).CrossRefGoogle Scholar
  22. 22.
    M. Jouvet and F. Delorme, Locus coeruleus et sommeil paradoxique, C.R. Soc. Biol. 159: 4790 (1988).Google Scholar
  23. 23.
    J.C. Hendricks, A. R. Morrison and G. L. Mann, Different behaviors during paradoxical sleep without atonia depend on pontine lesions site. Brain Res. 239: 81 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    M. E. Corcoran, J.A Wada, A. Wake, and H Urstad. Research note: Failure of atropine to retard amygdala kindling. Exp. Neurobiol. 51: 271 (1976).CrossRefGoogle Scholar
  25. 25.
    B.E Jones and H. H. Webster. Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-Cholinergic cell area in the cat. I. Effect upon the cholinergic innervation of the brain, Brain Res., 458: 285 (1989)Google Scholar
  26. 26.
    S.R. Vincent and P. B. Reiner, The immunohistochemical localization of choline acetyltransferase in the cat brain, Brain Res. Bull. 18: 371 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. N. Shouse
    • 1
    • 4
  • A. King
    • 1
    • 4
  • J. Langer
    • 1
    • 4
  • K. Wellesley
    • 1
    • 4
  • T. Vreeken
    • 1
    • 4
  • K. King
    • 1
    • 4
  • J. Siegel
    • 2
    • 5
  • R. Szymusiak
    • 3
    • 6
  1. 1.Sleep Disturbance ResearchVA Medical CenterSepulvedaUSA
  2. 2.Neurobiology ResearchVA Medical CenterSepulvedaUSA
  3. 3.Neurophysiology ResearchVA Medical CenterSepulvedaUSA
  4. 4.Anatomy and Cell BiologyUCLA School of MedicineLos AngelesUSA
  5. 5.PsychiatryUCLA School of MedicineLos AngelesUSA
  6. 6.PsychologyUCLA School of MedicineLos AngelesUSA

Personalised recommendations