Kindling 4 pp 157-168 | Cite as

Mechanisms of Kindling in Developing Animals

  • Ellen F. Sperber
  • Kurt Haas
  • Solomon L. Moshé
Part of the Advances in Behavioral Biology book series (ABBI, volume 37)


Kindling was first demonstrated by Goddard and his colleagues in the late 1960s (1,2) and has since become an important animal model of partial epilepsy with secondary generalization. Kindling is most commonly achieved with the administration of repeated local subconvulsive electrical stimulations which eventually lead to the development of generalized seizures. Chemical kindling can also be demonstrated with a variety of convulsant drugs (pentylenetetrazol, lidocaine, cocaine, penicillin and carbachol) administered at subconvulsive doses (3–10). Irrespective of the type of stimulus used for the kindling process, kindling progresses in a predictable manner. The initial stimulus results in a brief focal electrical seizure or afterdischarge (AD) in the absence of any behavioral manifestations. Gradually, as the behavioral manifestations become more apparent, the ADs intensify and increase in duration. Once established, the kindling effect persists for several months suggesting that it produces permanent changes in the brain (2).


GABAA Receptor Kainic Acid GABAB Receptor Seizure Susceptibility Spontaneous Seizure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. V. Goddard, Development of epileptic seizures through brain stimulation at low intensity. Nature 204: 1020–1021 (1967).CrossRefGoogle Scholar
  2. 2.
    G. V. Goddard, D. C. McIntyre, and C. K. Leech, A permanent change in brain function resulting from daily electrical stimulation. Exp.Neurol. 25: 295–330 (1969).PubMedCrossRefGoogle Scholar
  3. 3.
    H. Vosu, and R. A. Wise, Cholinergic seizure kindling in the rat: comparison of caudate, amygdala and hippocampus, Behav Biol. 13: 491–495 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    R. M. Post, R. T. Kopanda, and A. Lee, Progressive behavioral changes during chronic lidocaine administration: relationship to kindling, Life Sci. 17: 943–950 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    R. M. Post, Progressive changes in behavior and seizures following chronic cocaine administration relationship to kindling and psychosis, Advan. Behay. Biol. 21: 353–372 (1977).Google Scholar
  6. 6.
    J. S. Stripling, and E. H. Ellinwood, Jr., Augmentation of the behavioural and electrophysiologic responses to cocaine by chronic administration in the rat, Exp. Neurol. 54: 546–564 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    R. C. Collins, Kindling of neuroanatomic pathways during recurrent focal penicillin seizures, Brain Res. 150: 503–517 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    J. P. Fabisiak, and W. S. Schwark, Aspects of the pentylenetetrazol kindling model of epileptogenesis in the rat, Exp. Neurol. 78: 7–14 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    D. P. Cain, Bidirectional transfer of electrical and carbachol kindling, Brain Res. 260: 135–138 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    C. G. Wasterlain, and V. Jonec, Chemical kindling by muscarinic amygdaloid stimulation in the rat, Brain Res. 271: 311–323 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    S. L. Moshé, The effects of age on the kindling phenomenon, Dev. Psychohiol. 14: 75–81 (1981).CrossRefGoogle Scholar
  12. 12.
    S. L. Moshé, N. S. Sharpless, and J. Kaplan, Kindling in developing rats: afterdischarge thresholds, Brain Res. 211: 190–195 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    M. E. Gilbert, and D. P. Cain A developmental study of kindling in the rat, Dev. Brain Res 2: 321–328 (1982).CrossRefGoogle Scholar
  14. 14.
    G. L. Holmes, and D. A. Weber, Effects of ACTH on seizure susceptibility in the developing brain, Ann. Neuro1. 20: 82–88 (1986).CrossRefGoogle Scholar
  15. 15.
    S. Lee, H. Kawawaki, O. Matsuoka, and R. Murata, Effect of Ca-antagonist (flunarizine) on kindling seizures in suckling rats, Na To Hattatsu, 18: 292–298 (1986).Google Scholar
  16. 16.
    S. L. Moshé, B. J. Albala, R. F. Ackermann, and J. Engel Jr., Increased seizure susceptibility of the immature brain, Dev. Brain Res. 7: 81–85 (1983).CrossRefGoogle Scholar
  17. 17.
    S. Lee, R. Murata, and S. Matsuura, Developmental study of hippocampal kindling, Epilepsia 30: 266–270 (1987).CrossRefGoogle Scholar
  18. 18.
    R. J. Racine, M. W. Burnham, J. G. Gartner, and D. Levitan, Rates of motor seizure development in rats subjected to electrical brain stimulation: strain and interstimulation interval effects, Electroencephal. Clin Neuroph sviol 35: 553–556 (1973).Google Scholar
  19. 19.
    S. L. Peterson, T. E. Albertson, and L. G. Stark, Intertrial intervals and kindled seizures, Exp. Neurol. 71: 144–153 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    S. L. Moshé, and B. J. Albala, Maturational changes in postictal refractoriness and seizure susceptibility in developing rats, Ann. Neurol. 13: 552–557 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    J. P. Pinel, and L. I. Rovner, Experimental epileptogenesis: kindling induced epilepsy in rats, Exp. Neurol. 58: 190–202 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    S. L. Moshé, and N. Ludvig, Kindling, in: “Recent Advances of Epilepsy 4” T. A. Pedley and B. S. Meldrum, eds., Churchill Livingstone, N. Y. (1988).Google Scholar
  23. 23.
    M. S. Duchowny, and J. F. Burchfiel, Facilitation and antagonism of kindled seizures development in the limbic system of the rat, Electroencephal. Clin. Neurophysiol. 51: 403–416 (1981).CrossRefGoogle Scholar
  24. 24.
    J. L. Burchfiel, K. A. Serpa, and F. H. Duffy, Further studies of antagonism of seizure development between concurrently developing kindled limbic foci in the rat, Exp.Neurol. 75: 476–489 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Vernadakis, and D. M. Woodbury, The developing animal as a model, Epilepsia 10: 163–178 (1969).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Zouhar, P. Mares, and G. Brozek, Electrocorticographic activity elicited by metrazol during ontogenesis in rats, Arch. Int. Pharmacodyn. 248: 280–288 (1980).PubMedGoogle Scholar
  27. 27.
    B. J. Albala, S. L. Moshé, and R. Okada, Kainic acid induced seizures: a developmental study, Dev Brain Res. 13: 139–148 (1984).CrossRefGoogle Scholar
  28. 28.
    E. A. Cavalheiro, D. F. Silva, W. A. Turski, L. S. CalderazzoFilho, Z. A. Bartolotto, and L. Turski, The susceptibility of rats to pilocarpine-induced seizures is age dependent, Dev. Brain Res. 37: 43–58 (1987).CrossRefGoogle Scholar
  29. 29.
    E. F. Sperber, and S. L. Moshé, Age-related differences in seizure susceptibility to flurothyl, Dev Brain Res 39: 295–297 (1988).CrossRefGoogle Scholar
  30. 30.
    M. J. Iadarola, and K. Gale, Substantia nigra: site of anticonvulsant activity mediated by gamma-aminobutyric acid, Science 218: 1237–1240 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    G. Le Gal La Salle, M. Kajima, and S. Feldblum, Abortive amygdaloid kindling seizures following microinjections of gamma-vinyl-GABA in the vicinity of substantia nigra in rats, Neurosci Lett. 36: 69–74 (1983).PubMedCrossRefGoogle Scholar
  32. 32.
    L. P. Gonzalez, and M. K. Hettinger, Intranigral muscimol suppresses ethanol withdrawal seizures, Brain Res. 298: 163–166 (1984).PubMedCrossRefGoogle Scholar
  33. 33.
    J. O. McNamara, M. T. Galloway, L. L. Rigsbee, and C. Shin. Evidence implicating substantia nigra in regulation of kindled seizure threshold, J. Neurosci. 4: 2410–2417 (1984).PubMedGoogle Scholar
  34. 34.
    R. Okada, S. L. Moshé, B. Y. Wong, E. F. Sperber, and D. Zhao, Age related substantia nigra mediated seizure facilitation, Exp Neurol. 93: 180–187 (1986).PubMedCrossRefGoogle Scholar
  35. 35.
    L. Turski, E. A. Cavalheiro, M. Schwarz, W. A. Turski, L. E. A. M. Mello, Z. A. Bartolotto, T. Klockgether, and K. H. Sontag, Susceptibility to seizures produced by pilocarpine in rats after microinjection of isoniazid or gamma-vinyl GABA into the SN, Brain Res. 370: 294–309 (1986).PubMedCrossRefGoogle Scholar
  36. 36.
    E. F. Sperber, J. N. D. Wurpel, D. Y. Zhao, and S. L. Moshé, Evidence for the involvement of nigral GABAA receptors in seizures of adult rats, Brain Res.. 480: 378–382 (1989).Google Scholar
  37. 37.
    J. T. Coyle, and S. J. Enna, Neurochemical aspects of the ontogenesis of gabanergic neurons in the rat brain. Drain Res. 111: 119–133 (1976).Google Scholar
  38. 38.
    J. M. Palacios, D. L. Niehoff, and M. J. Kuhar, Ontogeny of GABA and benzodiazepine receptors: effect of Triton X-100, bromide and muscimol, Brain Res. 179: 390–395 (1979).PubMedCrossRefGoogle Scholar
  39. 39.
    J. N. D. Wurpel, A. Tempel, E. F. Sperber, and S. L. Moshé, Age-related changes of muscimol binding in the substantia nigra, Dev Brain Res 43: 305–307 (1988).CrossRefGoogle Scholar
  40. 40.
    E. F. Sperber, B. Y. Wong, J. N. D. Wurpel, and S. L. Moshé, Nigral infusions of muscimol or bicuculline facilitate seizures in developing rats, Dev. Brain Res. 37: 243–250 (1987).CrossRefGoogle Scholar
  41. 41.
    E. F. Sperber, J. N. D. Wurpel, and S. L. Moshé, Evidence for the involvement of nigral GABAB receptors in seizures of rat pups, Day Brain Res. 47: 143–146 (1989).CrossRefGoogle Scholar
  42. 42.
    C. McIntyre, Amygdala kindling in rats: facilitation after local amygdala norepinephrine depletion with 6hydroxydopamine, Exp.Neuro1. 69: 395–407 (1979).CrossRefGoogle Scholar
  43. 43.
    C. D. Applegate, J. L. Burchfiel, and R. J. Konkol, Kindling antagonism: effects of norepinephrine depletion on kindled seizure suppression after concurrent alternating stimulation in rats. Exp Neurol. 94: 379–390 (1986).PubMedCrossRefGoogle Scholar
  44. 44.
    J. L. Burchfiel, C. D. Applegate, and R. J. Konkol, Kindling antagonism: A role for norepinephrine in seizure suppression, in: “Kindling 3”, J. A. Wada, ed., Raven Press, N.Y. (1972).Google Scholar
  45. 45.
    L. P. Lanier, A. J. Dunn, and C. V. Hartesveldt, in: “Reviews of Neuroscience vol. 2”, S. Ehrenpreis and I.J. Kopin, eds., Raven Press, N. Y. (1976).Google Scholar
  46. 46.
    R. J. Konkol, E. G. Bendeich, and G. R. Breese, A biochemical and morphological study of the altered growth pattern of central catecholamine neurons following 6-hydroxydopamine, Brain Res. 140: 125–135 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Ellen F. Sperber
    • 1
  • Kurt Haas
    • 1
  • Solomon L. Moshé
    • 1
  1. 1.Departments of Neurology Neuroscience and Pediatrics Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations