Kindling 4 pp 141-156 | Cite as

Noradrenaline and Kindling Revisited

  • Michael E. Corcoran
  • Gerald K. Weiss
Part of the Advances in Behavioral Biology book series (ABBI, volume 37)


One of the most consistent findings in the literature on kindling has been the observation that the process of seizure development is facilitated by treatments that interfere with the actions of noradrenaline (NA). This body of research has given rise to the hypothesis that part of the mechanism of kindling may be a decrease in the effects of NA, produced either by a progressive suppression of the presynaptic release of NA1 or a decline in the postsynaptic response to NA2. In the present chapter we provide an update on recent evidence that NA may modulate kindling.


Locus Coeruleus Partial Seizure Perforant Path Locus Coeruleus Neuron Seizure Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. E. Corcoran, Catecholamines and kindling, in: “Kindling 2,” J. A. Wada, ed., Raven, New York (1981).Google Scholar
  2. 2.
    D. C. McIntyre, Catecholamine involvement in amygdala kindling of the rat, in: “Kindling 2,” J. A. Wada, ed., Raven, New York (1981).Google Scholar
  3. 3.
    I. M. Altman and M. E. Corcoran, Facilitation of neocortical kindling by depletion of noradrenaline, Brain Res. 270: 174 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    R. L. Gellman, J. A. Kallianos, and J. O. McNamara, Alpha-2 adrenergic receptors mediate an endogenous noradrenergic suppression of kindling development, J. Pharmacol. exp. Therap 241: 891 (1987).Google Scholar
  5. 5.
    V. S. Westerberg, J. Lewis, and M. E. Corcoran, Depletion of noradrenaline fails to affect kindled seizures, Exp. Neurol, 84: 237 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    H. B. Michelson and G. Buterbaugh, Amygdala kindling in juvenile rats following neonatal administration of 6-hydroxydopamine, Exp. Neurol. 90: 588 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    M. E. Corcoran, Characteristics of accelerated kindling after depletion of noradrenaline in adult rats, Neuropharmacology, 27: 1081 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Uemura, H. Kimura, A. Kashia, H. Kumashiro, and J. A. Wada, Bifunctional roles of catecholamines in the development of amygdala kindling by continuous intra-amygdala infusion of 6hydroxydopamine, Brain Res., 448: 162 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    D. C. McIntyre, J. Rajala, and N. Edson, Suppression of amygdala kindling with short interstimulus intervals: effect of norepinephrine depletion, Exp. Neurol. 95: 391 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    C. D. Applegate, R. J. Konkol, and J. L. Burchfiel, Kindling antagonism: a role for hindbrain norepinephrine in the development of site suppression following concurrent, alternate stimulation, Brain Res. 407: 212 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    W. M. Burnham, R. J. Racine, and M. Okazaki, Kindling mechanisms. II. Biochemical studies, in: “Kindling 3,” J. A. Wada, ed., Raven, New York, 1986.Google Scholar
  12. 12.
    D. C. McIntyre and L. Giugno, Effect of clonidine on amygdala kindling in normal and 6-hydroxydopamine-pretreated rats, Exp. Neurol. 99: 96 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    W. Loscher and S. J. Czuczwar, Comparison of drugs with different selectivity for central a1- and a-2 adrenoceptors in animal models of epilepsy, Epilepsy Res. 1: 1165 (1987).CrossRefGoogle Scholar
  14. 14.
    D. I. Barry, I. Kikvadze, P. Brundin, T. Bolwig, A. Bjorklund, and O. Lindvall, Grafted noradrenergic neurons suppress seizure development in kindling-induced epilepsy, Proc. Natl. Acad. Sci. USA 84: 8712 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    C. Jimenez-Rivera, A. Voltura, and G. K. Weiss, Effect of locus ceruleus stimulation on the development of kindled seizures, Exp. Neurol. 95: 13 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    D. Blackwood, The role of noradrenaline and dopamine in amygdaloid kindling, in: “Neurotransmitters, Seizures, and Epilepsy,” P. Morselli, K. G. Lloyd, W. Loscher, B. Meldrum, and E. H. Reynolds, eds., Raven, New York (1981).Google Scholar
  17. 17.
    J. Lewis, V. Westerberg, and M. E. Corcoran, Monoaminergic correlates of kindling, Brain Res. 403: 205 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    M. M. Okazaki, J. J. Warsh, and W. M. Burnham, Unchanged norepinephrine turnover and concentrations in amygdala-kindled rat brain regions 2 months postseizure, Exp. Neurol. 94: 81 (1986).PubMedCrossRefGoogle Scholar
  19. 19.
    M. M. Okazaki, J. J. Warsh, and W. M. Burnham, Unchanged regional norepinephrine glycol metabolite levels in rat brain two months after amygdala kindling, Epilepsy Res. 2: 72 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    D. C. McIntyre and D. C. S. Roberts, Long-term reduction in betaadrenergic receptor binding after amygdala kindling in rats, Exp. Neurol. 82: 17 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    S. C. Stanford and J. G. R. Jefferys, Down-regulation of a-2 and ß-adrenoceptor binding sites in rat cortex caused by amygdalar kindling, Exp. Neurol. 90: 108 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    L. S. Chen and J. O. McNamara, Autoradiographic localization of reduced alpha2 adrenergic receptor binding in kindled rats, Soc. Neurosci. Abstr. 14: 1148 (1988).Google Scholar
  23. 23.
    H. B. Michelson and G. G. Buterbaugh, Alterations in 0-adrenergic receptor binding in partially and fully amygdala-kindled juvenile and adult rats, Exp. Neurol. 95: 56 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    C. Jimenez-Rivera. M. J. Chen, A. Vigil, D. D. Savage, and G. K. Weiss, Transient elevation of locus coeruleus a-2-adrenergic receptor binding during the early stages of amygdala kindling, Brain Res. 485: 363 (1989).PubMedCrossRefGoogle Scholar
  25. 25.
    S. Foote, F. Bloom, and G. Aston-Jones, Nucleus locus coeruleus: new evidence of anatomical and physiological specificity, Physiol. Rev. 63: 884 (1983).Google Scholar
  26. 26.
    M. J. Chen, A. Vigil, D. D. Savage, and G. K. Weiss, Transient elevation of amygdala alpha2 adrenergic receptor binding sites during the early stages of amygdala kindling, Epilepsy Res. in press.Google Scholar
  27. 27.
    A. L. Mueller and T. V. Dunwiddie, Anticonvulsant and proconvulsant actions of alpha-and beta-noradrenergic agonists on epileptiform activity in rat hippocampus in vitro, Epilepsia 24: 57 (1983).PubMedCrossRefGoogle Scholar
  28. 28.
    C. Jiminez-Rivera and G. K. Weiss, The effect of amygdala kindled seizures on locus coeruleus activity, Brain Res. Bull. in press.Google Scholar
  29. 29.
    D. W. Bonhaus and J. O. McNamara, Activity of locus coeruleus neurons in amygdala kindled rats: role in the suppression of afterdischarge, Brain Res. 407: 102 (1987).PubMedCrossRefGoogle Scholar
  30. 30.
    D. C. McIntyre and R. K. S. Wong, Cellular and synaptic properties of amygdala-kindled pyriform cortex in vitro, J. Neurophysiol 55: 1295 (1986).PubMedGoogle Scholar
  31. 31.
    P. K. Stanton, I. Mody, and U. Heinemann, Down-regulation of norepinephrine sensitivity after induction of long-term neuronal plasticity (kindling) in the rat dentate gyrus, Brain Res. 476: 367 (1988).CrossRefGoogle Scholar
  32. 32.
    R. Dasheiff and J. O. McNamara, Evidence for an agonist independent down regulation of hippocampal muscarinic receptors in kindling, Brain Res. 195: 345 (1980).PubMedCrossRefGoogle Scholar
  33. 33.
    B. D. Waterhouse, F. M. Sessler, J. T. Cheng, D. J. Woodward, S. A. Azizi, and H. C. Moises, New evidence for a gating action of norepinephrine in central neuronal circuits of mammalian brain, Brain Res. Bull 21: 425 (1988).PubMedCrossRefGoogle Scholar
  34. 34.
    H. L. Haas and A. Konnerth, Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells, Nature 302: 432 (1983).PubMedCrossRefGoogle Scholar
  35. 35.
    R. J. Racine, N. W. Milgram, and S. Hafner, Long-term potentiation phenomena in the rat limbic forebrain, Brain Res 260: 217 (1983).PubMedCrossRefGoogle Scholar
  36. 36.
    R. J. Racine, J. G. Gartner, and W. M. Burnham, Epileptiform activity and neural plasticity in limbic structures, Brain Res. 47: 262 (1972).PubMedCrossRefGoogle Scholar
  37. 37.
    P. K. Stanton and J. M. Sarvey, Depletion of norepinephrine, but not serotonin, reduces long-term potentiation in the dentate gyrus of rat hippocampal slices, J. Neurosci 5: 2169 (1985).PubMedGoogle Scholar
  38. 38.
    W. F. Hopkins and D. Johnston, Noradrenergic enhancement of longterm potentiation at mossy fiber synapses in the hippocampus, J. Neurophysiol 59: 667 (1988).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Michael E. Corcoran
    • 1
  • Gerald K. Weiss
    • 2
  1. 1.Department of PsychologyUniversity of VictoriaVictoriaCanada
  2. 2.Department of PhysiologyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations