Advertisement

Spatiotemporal Intermittency

  • Paul Manneville
Part of the NATO ASI Series book series (NSSB, volume 225)

Abstract

As a first step toward the understanding of the nature of turbulence, the study of the emergence and destabilization of dissipative structures in out-of-equilibrium systems has attracted considerable attention. During this study, confinement effects have been shown to play a major role in controlling the nature of the nonlinear effective dynamics driving the unstable modes. In confined systems, the spatial structure of the modes remains frozen, so that we are left with a small number of degrees of freedom well accounted for by the theory of dissipative dynamical systems. Intrinsic stochas-ticity is then mainly synonymous of temporal chaos. In extended systems confinement effects are weak and spatial modulations are allowed, leading to the formation of patterns. A much larger number of degrees of freedom is then involved in the dynamics, which raises the problem of the transition to weak turbulence.

Keywords

Partial Differential Equation Directed Percolation Turbulent Spot Laminar State Plane Poiseuille Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Pomeau, Physica D 23 (1986) 3.ADSCrossRefGoogle Scholar
  2. 2.
    H. Chaté and P. Manneville, Transition to turbulence via spatiotemporal in-termittency: modeling and critical properties in Ref. 3 below.Google Scholar
  3. 3.
    P. Coullet and P. Huerre, eds., New trends in nonlinear dynamics and pattern forming phenomena, Proceedings Cargèse’88, (Plenum Press, to appear).Google Scholar
  4. 4.
    H. Chaté and P. Manneville, Phys.Rev.Lett. 58 (1987) 112.ADSCrossRefGoogle Scholar
  5. 5.
    K. Kaneko, Prog. Theor. Phys. 74(1985)1033.Google Scholar
  6. 6.
    H. Chaté and P. Manneville, Physica D 32 (1988)409.MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    H. Chaté and P. Manneville, Europhys. Lett. 6 (1988)591.ADSCrossRefGoogle Scholar
  8. 8.
    H. Chaté and P. Manneville, J. Stat. Phys. 56(1989)357.ADSCrossRefGoogle Scholar
  9. 9.
    P. Bergé, Nucl. Phys. B (Proc.Suppl.) 2 (1987) 247CrossRefGoogle Scholar
  10. 9a.
    S. Ciliberto and P. Bigazzi, Phys. Rev. Lett. 60 (1988) 286.ADSCrossRefGoogle Scholar
  11. 10.
    F. Daviaud, P. Berge, and M. Dubois, Europhys. Lett. 9 (1989) 441; M. Dubois, these proceedings.ADSCrossRefGoogle Scholar
  12. 11.
    M. Rabaud, S. Michalland, and Y. Couder, preprint ENS Paris, 1989; Y. Couder, these proceedings.Google Scholar
  13. 12.
    C.D. Andereck, S.S. Liu, and H.L. Swinney, J. Fluid Mech. 164 (1986) 155.ADSCrossRefGoogle Scholar
  14. 13.
    J.J. Hegseth, C.D. Andereck, F. Hayot, and Y. Pomeau, Phys. Rev. Lett. 62 (1989) 257.ADSCrossRefGoogle Scholar
  15. 14.
    see the review by D.J. Tritton, Physical fluid dynamics 2nd edition (Clarendon Press, Oxford, 1988).Google Scholar
  16. 15.
    S.E. Widnall, “Growth of turbulent spots in plane Poiseuille flow”, in Turbulence and Chaotic Phenomena in Fluids, T. Tatsumi, ed. (Elsevier, 1984)Google Scholar
  17. 15a.
    J.J. Riley and M. Gad-el-Hak, “The dynamics of turbulent spots”, in Frontiers in fluid dynamics, S.H. Davis and J.L. Lumley, eds (Springer, 1985).Google Scholar
  18. 16.
    H. Chaté and B. Nicolaenko, in the Cargèse’88 Proceedings, Ref. 3.Google Scholar
  19. 17.
    for a brief but recent description of late stages of the transition to turbulence in boundary layers see: D.M. Bushnell, C.B. McGinley, “Turbulence control in wall flows,” Annual Review of Fluid Mechanics, 21 (1989)1.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Paul Manneville
    • 1
  1. 1.Institut de Recherche FondamentaleDPh-G/PSRM, Centre d’Etudes Nucléaires de SaclayGif-sur-Yvette CedexFrance

Personalised recommendations