Advertisement

Large Magnetic Reynolds Number Dynamo Action in Steady Spatially Periodic Flows

  • A. M. Soward
  • S. Childress
Part of the NATO ASI Series book series (NSSB, volume 225)

Abstract

Dynamo action at large magnetic Reynolds number R is very sensitive to the streamline topology. A starting point for a systematic study is the 2-dimensional steady spatially periodic flow u’ = (∂ψ’/∂y, -∂ψ’/∂x, Kψ’), ψ’ = sinx siny + δ cosx cosy, where δ,K = constants. Slow dynamo action is possible within the spiralling vortices, and individual modes are localized in the neighbourhood of particular streamsurfaces. When δ = 0, almost fast dynamo action occurs in boundary layers of width R-1/2 containing the streamline separatrices. These connect the stagnation points and bound adjacent vortices. This streamline pattern is structurally unstable, and so, when 0 < δ ≪ 1, channels emerge between the vortices. With the addition of mean motion ū = (M,N,O)/(M2 +N2)1/2, where M,N = relatively prime integers, ∈ ≪ 1, but δ = 0, the streamlines connected to the X-type stagnation points bound channels with multiplicity of order L = M + N, and are dense in the irrational limit L→ ∞. Dynamo action in all these systems is discussed. Results for the latter case shed light on dynamo processes, which may occur in the fully 3-dimensional ABC-flows. There the flow downstream of stagnation points on certain 2-dimensional manifolds provides the sites of possible fast dynamo action. The manifolds form dense subregions, where the fluid particles paths are chaotic.

Keywords

Boundary Layer Stagnation Point Magnetic Induction Equation Dynamo Action irrationaL Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. K. Moffatt and M. R. E. Proctor, Topological constraints associated with fast dynamo action, J. Fluid Mech. 154:493 (1985).ADSMATHCrossRefGoogle Scholar
  2. 2.
    S. I. Braginsky, Self-excitation of a magnetic field during the motion of a highly conducting fluid, Zh. Eksp & Teor. Fiz. 47:1084 (1964).Google Scholar
  3. 3.
    A. Ruzmaikin, D. Sokoloff and A. Shukurov, Hydromagnetic screw dynamo, J. Fluid Mech. 197:39 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    A. D. Gilbert, Fast dynamo action in the Ponomarenko dynamo, Geophys. Astrophys. Fluid Dynamics 44:241 (1988).ADSMATHCrossRefGoogle Scholar
  5. 5.
    A. M. Soward, A unified approach to a class of slow dynamos, Geophys. Astrophvs. Fluid Dynamics (submitted, 1989).Google Scholar
  6. 6.
    G. O. Roberts, Dynamo action of fluid motions with two-dimensional periodicity, Phil. Trans. Roy. Soc. Lond. A271:411 (1972).ADSGoogle Scholar
  7. 7.
    S. Childress, Alpha-effect in flux ropes and sheets, Phys. EarthPlanet. Int. 20:172 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    A. M. Soward, Fast dynamo action in a steady flow, J. Fluid Mech. 180:267 (1987).ADSMATHCrossRefGoogle Scholar
  9. 9.
    N. O. Weiss, The expulsion of magnetic flux by eddies, Proc. Roy. Soc.Lond. A293:310 (1966).Google Scholar
  10. 10.
    S. Childress and A. M. Soward, Scalar transport and alpha-effect for a family of cat’s-eye flows, T. Fluid Mech. 205:99 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    A. M. Soward and S. Childress, Large magnetic Reynolds number dynamo action in a spatially periodic flow with mean motion, Phil. Trans. Roy. Soc. Lond. A (accepted, 1989).Google Scholar
  12. 12.
    T. Dombre, U. Frisch, J. M. Greene, M. Hénon, A. Mehr and A. M. Soward, Chaotic streamlines in the ABC flows, J. Fluid Mech. 167:353 (1986).MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    D. J. Galloway and U. Frisch, A numerical investigation of magnetic field generation in a flow with chaotic streamlines, Geophys. Astrophys. Fluid Dynamics 29:13 (1984).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    D. J. Galloway and U. Frisch, Dynamo action in a family of flows with chaotic streamlines, Geophys. Astrophys. Fluid Dynamics 36:53 (1986).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    H. Alfvén, Tellus 2:74 (1950).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    S. I. Vainshtein and Ya. B. Zeldovich, Origin of magnetic fields in Astrophysics, Sov. Phys. Usp. 15:159 (1972).ADSCrossRefGoogle Scholar
  17. 17.
    B. Bayly and S. Childress, Construction of fast dynamos using unsteady flows and maps in three dimensions, Geophys. Astrophys. Fluid Dynamics 44:211 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    J. M. Finn and E. Ott, Chaotic flows and fast magnetic dynamos, Phys.Fluids 31: 2992 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    J. M. Ottino, “The kinematics of mixing: stretching, chaos and transport,” Cambridge University Press, Cambridge (1989).MATHGoogle Scholar
  20. 20.
    S. Childress and A. M. Soward, On the rapid generation of magnetic fields, in “Chaos in Astrophysics,” J. R. Buchler, J. M. Perdang and E. A. Spiegel, ed., NATO ASI Series C: Mathematical and Physical Sciences 161:223 (1985).Google Scholar
  21. 21.
    A. M. Soward and S. Childress, Analytic theory of dynamos, Adv. SpaceRes. 6:7 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    D. R. Fearn, P. H. Roberts and A. M. Soward, Convection, stability and the dynamo, in “Energy, Stability and Convection,” G. P. Galdi and B. Straughan, ed., Pitman Research Notes in Mathematics Series 168:60 (1988).Google Scholar
  23. 23.
    A. M. Soward, On dynamo action in a steady flow at large magnetic Reynolds number, Geophys. Astrophys. Fluid Dynamics 49:3 (1989).ADSMATHCrossRefGoogle Scholar
  24. 24.
    A. M. Soward, A kinematic theory of large magnetic Reynolds number dynamos, Phil. Trans. Roy. Soc Lond. A272:431 (1972).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • A. M. Soward
    • 1
  • S. Childress
    • 2
  1. 1.Department of Mathematics and StatisticsThe UniversityNewcastle upon TyneUK
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations