Collapsing Solutions in the 3-D Euler Equations

  • Alain Pumir
  • Eric D. Siggia
Part of the NATO ASI Series book series (NSSB, volume 225)


Intermittent fluctuations in a turbulent flow constitute one of the most original, and also challenging problems in fluid mechanics1. They have been observed in many experimental situations, and it has been established that they play a very important role in many processes of great practical importance. As an example, it has been shown experimentally that about a half of the Reynolds stress in turbulent boundary layer flows is produced during the ‘bursting’ events2. These events are associated with the generations of small scales in the flow. Indeed, variations of the velocity field over extremely small length scales (even smaller than the Kolmogorov length!) have been reported in turbulent boundary layer flows3. Numerical simulations of turbulent channel flow at much more modest Reynolds numbers have revealed similar features4.


Euler Equation Turbulent Boundary Layer Paired Vortex Vortex Tube Fixed Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    A.A. Townsend, Proc. Roy. Soc. A208, 534 (1951)ADSGoogle Scholar
  2. 2).
    W. Willmarth and S. Lu, J. Fluid Mech. 48, 775 (1973)Google Scholar
  3. 3).
    W. Willmarth and T. Bogar, Phys. Fluids 20, S9 (1977)ADSCrossRefGoogle Scholar
  4. 4).
    J. Kim, Phys. Fluids 28, 52 (1984)ADSCrossRefGoogle Scholar
  5. 5).
    A. Pumir and E.D. Siggia, Physica D37, 539 (1989)ADSGoogle Scholar
  6. 6).
    J. Leray, Acta Math. 63, 193 (1934)MathSciNetMATHCrossRefGoogle Scholar
  7. 7).
    O. Ladyzhenskaya, The mathematical theory of viscous incompressible flows. Gordon and Breach (1963)Google Scholar
  8. 8).
    J. T. Beale, T. Kato and A. Majda, Commun. Math. Phys. 94, 61 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9).
    A. Pumir and E.D. Siggia, to be published in Phys. Fluids.Google Scholar
  10. 10).
    A. Pumir and R.M. Kerr, Phys. Rev. Lett. 58, 1963 (1987)CrossRefGoogle Scholar
  11. 11).
    E.D. Siggia and A. Pumir, 1985, Phys. Rev. Lett. 55, 1749 (1985)Google Scholar
  12. 11)a.
    E.D. Siggia and A. Pumir, Phys. Fluids 30, 1606 (1987)ADSMATHCrossRefGoogle Scholar
  13. 12).
    W. Ashurst, A. Kerstein, R. Kerr and C. Gibson, Phys. Fluids 30, 2343 (1987)ADSCrossRefGoogle Scholar
  14. 13).
    R.H. Kraichnan and R. Panda, Phys. Fluids 31, 2395 (1988)ADSMATHCrossRefGoogle Scholar
  15. 14).
    A. Tsinober, oral presentation at the conference Turbulence 89’ held in Grenoble (France), September 1989Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Alain Pumir
    • 1
  • Eric D. Siggia
    • 2
  1. 1.L.P. S., E.N.S.Paris CedexFrance
  2. 2.LASSPCornell UniversityIthacaUSA

Personalised recommendations