Front Propagation into Unstable States: Some Recent Developments and Surprises

  • Wim van Saarloos
Part of the NATO ASI Series book series (NSSB, volume 225)


I review the differences and similarities between the marginal stability approach to front propagation into unstable states and the “pinch point” analysis for the space-time evolution of perturbations developed in plasma physics. I then briefly discuss the following developments and surprises: (i) the resolution of a discrepancy between the theory and experiments on Taylor vortex fronts; (ii) some new results for the regime where front propagation is dominated by nonlinear effects (nonlinear marginal stability regime); (iii) ongoing work on fronts and pulses in the complex Ginzburg-Landau equation.


Unstable State Marginal Stability Convective Instability Front Velocity Front Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. van Saarloos, Phys. Rev. A37, 211 (1988).ADSGoogle Scholar
  2. 2.
    W. van Saarloos, Phys. Rev. A39, 6367 (1989).ADSGoogle Scholar
  3. 3.
    See e.g. P. Kolodner, this volume, and references therein.Google Scholar
  4. 4.
    M. C. Cross, Phys. Rev. Lett. 57, 2935 (1986);Google Scholar
  5. 4a.
    M. C. Cross, Phys. Rev. A38, 3593 (1988).Google Scholar
  6. 5.
    See e.g. P. Kolodner, A. Passner, C. M. Surko and R. W. Waiden, Phys. Rev. Lett. 56, 2621 (1986).ADSCrossRefGoogle Scholar
  7. 6.
    A. Bers, in: Handbook of Plasma Physics, M. N. Rosenbluth and R. Z. Sagdeev, eds. (North-Holland, Amsterdam, 1983).Google Scholar
  8. 7.
    P. Huerre, in: Propagation in Systems far from Equilibrium, J. E. Wesfreid, H. R. Brand, P. Manneville, G. Albinet, and N. Boccara, eds. (Springer, New York, 1988).Google Scholar
  9. 8.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Course of Theoretical Physics, (Pergamon, New York, 1981), vol. 10, chap. VI.Google Scholar
  10. 9.
    G. Dee and J. S. Langer, Phys. Rev. Lett. 50, 383 (1983).ADSCrossRefGoogle Scholar
  11. 10.
    E. Ben-Jacob, H. R. Brand, G. Dee, L. Kramer and J. S. Langer, Physica 14D, 348 (1985).MathSciNetADSGoogle Scholar
  12. 11.
    M. Niklas, M. Lücke and H. Müller-Krumbhaar, Phys. Rev. A40, 493 (1989).ADSGoogle Scholar
  13. 12.
    G. Ahlers and D. S. Cannell, Phys. Rev. Lett. 50, 1583 (1983).ADSCrossRefGoogle Scholar
  14. 13.
    W. van Saarloos and P. C. Hohenberg, to be published.Google Scholar
  15. 14.
    A. Kolmogorov, I. Petrovsky and N. Piskunov, Bull. Univ. Moskou, Ser. Internat., Sec. A 1, 1 (1937), reprinted in: Dynamics of Curved Fronts, P. Pelce, ed. (Academic, San Diego, 1988).Google Scholar
  16. 15.
    R. A. Fisher, Ann. Eugenics 7, 355 (1937).CrossRefGoogle Scholar
  17. 16.
    D. G. Aronson and H. F. Weinberger, Adv. Math. 30, 33 (1978).MathSciNetMATHCrossRefGoogle Scholar
  18. 17.
    See e.g. G. S. Triantafyllou, K. Kupfer and A. Bers, Phys. Rev. Lett. 58, 1914 (1987).ADSCrossRefGoogle Scholar
  19. 18.
    J. Swift and P. C. Hohenberg, Phys. Rev. A15, 319, (1977).ADSGoogle Scholar
  20. 19.
    P. Collet and J. P. Eckmann, Commun. Math. Phys. 107, 39 (1986).MathSciNetADSCrossRefGoogle Scholar
  21. 20.
    J. J. Niemela, G. Ahlers and D. S. Cannell, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Wim van Saarloos
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations