Sideband Instability of Waves with Periodic Boundary Conditions

  • B. Janiaud
  • E. Guyon
  • D. Bensimon
  • V. Croquette
Part of the NATO ASI Series book series (NSSB, volume 225)


The sideband instability for traveling waves is studied experimentally under periodic boundary conditions. Such an instability, known as the Eckhaus instability [1], is subcriticai in the case of stationary patterns. In contrast, for traveling waves, we show that the instability occurs via a forward bifurcation. This enables the study of the development of the phase instability and the change in wavenumber. We analyze the phase equation describing this instability. We show that the bifurcation is indeed supercritical. It is characterized by soliton solutions at onset and a transition to phase turbulence away from onset.


Rayleigh Number Soliton Solution Phase Equation Stationary Pattern Pure Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Eckhaus, “Studies in Nonlinear Stability Theory”, Springer, New-York (1965).Google Scholar
  2. [2]
    V. Croquette and H. Williams, Nonlinear Competition Between Waves in Convective Rolls Phys. Rev. A 39, 2765 (1989).ADSCrossRefGoogle Scholar
  3. [3]
    V. Croquette, M. Mory and F. Schosseler, Rayleigh-Bénard Convective Structures in a Cylindrical Container, J. de Physique 44, 293–301 (1983).CrossRefGoogle Scholar
  4. [4]
    R.M. Clever and F.H. Busse, Transition to Time-Dependent Convection, J. Fluid Mech. 65, 625 (1974).ADSMATHCrossRefGoogle Scholar
  5. [5]
    L. Kramer and W. Zimmerman, On the Eckhaus Instability for Spatially Periodic Patterns, Physica D 16, 221 (1985).ADSMATHCrossRefGoogle Scholar
  6. [6]
    J. Lega, Défauts Topologiques Associés à la Brisure de l’Invariance de Translation dans le Temps, Université de Nice, Thèse d’ état (1989).Google Scholar
  7. [7]
    Y. Pomeau and P. Manneville, Phase Diffusion in Rayleigh-Bénard Convection J. Phys. Lett. 47, 835 (1981).CrossRefGoogle Scholar
  8. [8]
    G. Ahlers, D.S. Cannel, M.A. Dominguez-Lerma, R. Heinrichs, Wavenumber Selection and Eckhaus Instability in Couette Taylor Flow, Physica D 23, 202 (1986);ADSCrossRefGoogle Scholar
  9. [8a]
    M. Lowe and J.P. Gollub, Solitons and the Commensurate-Incommensurate Transition in a Convecting Nematic FluidPhys. Rev. Lett. 55, 2575 (1985).ADSCrossRefGoogle Scholar
  10. [9]
    T.B Benjamin and J.E. Feir, The Disintegration of Wave Train on Deep Water J. Fluid Mech. 27, 417 (1966);ADSCrossRefGoogle Scholar
  11. [9a]
    J.T. Stuart and R.C. DiPrima, The Eckhaus Instability and Benjamin-Feir Resonance Mechanisms Proc. Roy. Soc. London, Ser. A 362, 27 (1978).ADSCrossRefGoogle Scholar
  12. [10]
    S. Fauve Large Scaie Instabilities of Cellular Flows, in: “Instabilities and Nonequilibrium Structures”, 63–88 Ed. Riedel Publishing Company (1987).Google Scholar
  13. [11]
    T. Kawahara, Phys. Rev. Lett. 51, 381 (1983).ADSCrossRefGoogle Scholar
  14. [12]
    H. Chaté and P. Manneville, Transition to Turbulence via Spatiotemporal Intermittency Phys. Rev. Lett. 58, 112 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • B. Janiaud
    • 1
  • E. Guyon
    • 1
  • D. Bensimon
    • 1
  • V. Croquette
    • 1
  1. 1.LPS-ENSParis cedex 05France

Personalised recommendations