Advertisement

Dynamics of Slowly Varying Wavetrains in Finite Geometry

  • Gerhard Dangelmayr
  • Edgar Knobloch
Part of the NATO ASI Series book series (NSSB, volume 225)

Abstract

The effect of distant endwalls on a Hopf bifurcation from a translation-invariant state is considered. The walls break the translation symmetry with the result that the initial bifurcation is to standing waves with a fixed phase. Travelling waves (TW) appear in a secondary pitchfork bifurcation. A new two-frequency state (MW) is present at small amplitude only. The theory is applied to systems, such as binary fluid convection, that are described by coupled complex Ginzburg-Landau equations. As a result the TW and MW are tentatively identified with the confined travelling wave states and the blinking states, respectively, observed both experimentally and numerically in systems with sufficiently large group velocity.

Keywords

Rayleigh Number Hopf Bifurcation Standing Wave Bifurcation Diagram Travel Wave Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.W. Waiden, P. Kolodner, A. Passner and C.M. Surko, Traveling waves and chaos in convection in binary fluid mixtures, Phys. Rev. Lett. 55: 496 (1985).ADSCrossRefGoogle Scholar
  2. [2]
    E. Moses, J. Fineberg and V. Steinberg, Multistability and confined traveling-wave patterns in a convecting binary mixture, Phys. Rev. A 35: 2757 (1987);ADSCrossRefGoogle Scholar
  3. [2a]
    R. Heinrichs, G. Ahlers and D.S. Cannell, Traveling waves and spatial variation in the convection of a binary mixture, Phys. Rev. A 35: 2761 (1987).ADSCrossRefGoogle Scholar
  4. [3]
    J. Fineberg, E. Moses and V. Steinberg, Spatially and temporally modulated traveling-wave pattern in convecting binary mixtures, Phys. Rev. Lett. 61: 838 (1988);ADSCrossRefGoogle Scholar
  5. [3a]
    P. Kolodner and C.M. Surko, Weakly nonlinear traveling-wave convection, Phys. Rev. Lett. 61: 842 (1988).ADSCrossRefGoogle Scholar
  6. [4]
    A.E. Deane, E. Knobloch, J. Toomre, Traveling waves and chaos in thermosolutal convection, Phys. Rev. A 36: 2862 (1987);ADSCrossRefGoogle Scholar
  7. [4a]
    S.J. Linz, M. Lücke, H.W. Müller and J. Niederländer, Convection in binary fluid mixtures: Traveling waves and lateral currents, Phys. Rev. A 38: 5727 (1988).ADSGoogle Scholar
  8. [5]
    C Bretherton and E.A. Spiegel, Intermittency through modulational instability, Phys. Lett. 96 A: 152 (1983); E. Knobloch, Doubly diffusive waves, in Doubly Diffusive Motions, FED-Vol. 24, N.E. Bixler and E.A. Spiegel, eds., ASME, New York (1985).Google Scholar
  9. [6]
    M.C Cross, Traveling and standing waves in binary-fluid convection in finite geometries, Phys. Rev. Lett. 57: 2935 (1986).ADSCrossRefGoogle Scholar
  10. [7]
    A.E. Deane, E. Knobloch and J. Toomre, Doubly diffusive waves, in Proc. Int. Conf. on Fluid Mechanics (Beijing 1987), Peking University Press (1987);Google Scholar
  11. [7a]
    A.E. Deane, E. Knobloch and J. Toomre, Traveling waves in large-aspect-ratio thermosolutal convection, Phys. Rev. A 37: 1817 (1988).ADSGoogle Scholar
  12. [8]
    M.C. Cross, Structure of nonlinear traveling-wave states in finite geometries, Phys. Rev. A 38: 3593 (1988).MathSciNetADSGoogle Scholar
  13. [9]
    P. Coullet, S. Fauve and E. Tirapegui, Large scale instability of nonlinear standing waves, J. Phys. Lettres 46: L-787 (1985).Google Scholar
  14. [10]
    M. Golubitsky and I. Stewart, Hopf bifurcation in the presence of symmetry, Arch. Rat. Mech. and Anal. 87: 107 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  15. [11]
    E. Knobloch, Oscillatory convection in binary mixtures, Phys. Rev. A 34: 1538 (1986).ADSGoogle Scholar
  16. [12]
    M.C Cross and K. Kim, Linear instability and the codimension-2 region in binary fluid convection between rigid impermeable boundaries, Phys. Rev. A 37: 3909 (1988).MathSciNetADSGoogle Scholar
  17. [13]
    W. Schöpf and W. Zimmermann, Multicritical behaviour in binary fluid convection, Eu-rophys. Lett. 8: 41 (1989).ADSCrossRefGoogle Scholar
  18. [14]
    G. Dangelmayr and D. Armbruster, Steady state mode interactions in the presence of 0(2) symmetry and in non-flux boundary conditions, Contemp. Math. 56: 53 (1986).MathSciNetCrossRefGoogle Scholar
  19. [15]
    J.D. Crawford, M. Golubitsky, M.G.M. Gomas, E. Knobloch and I. Stewart, Boundary conditions as symmetry constraints, in Proc. Warwick Symp. on Singularity Theory and its Applications, to appear (1990).Google Scholar
  20. [16]
    M.C. Cross, P.G. Daniels, P.C. Hohenberg and E.D. Siggia, Phase-winding solutions in a finite container above the convective threshold, J. Fluid Mech. 127: 155 (1983); see also ref. [8].MathSciNetADSMATHCrossRefGoogle Scholar
  21. [17]
    G. Dangelmayr and E. Knobloch, On the Hopf bifurcation with broken O(2) symmetry, in The Physics of Structure Formation: Theory and Simulation, W. Güttinger and G. Dangelmayr, eds., Springer-Verlag, Berlin (1987);Google Scholar
  22. [17a]
    G. Dangelmayr and E. Knobloch, Hopf bifurcation in reaction-diffusion equations with broken translation symmetry, in Proc. of the Int. Conf. on Bifurcation Theory and its Numerical Anlaysis, Li Kaitai, J. Marsden, M. Golubitsky, G. Iooss, eds., Xian Jiatong University Press, Xian (1989).Google Scholar
  23. [18]
    G. Dangelmayr and E. Knobloch, Hopf bifurcation with broken circular symmetry, Non-linearity (submitted).Google Scholar
  24. [19]
    S. van Gils and J. Mallet-Paret, Hopf bifurcation and symmetry: travelling and standing waves on the circle, Proc. Roy. Soc. Edinburgh 104 A: 279 (1986).CrossRefGoogle Scholar
  25. [20]
    E. Knobloch, On the degenerate Hopf bifurcation with 0(2) symmetry, Contemp. Math. 56: 193 (1986).MathSciNetCrossRefGoogle Scholar
  26. [21]
    J.D. Crawford and E. Knobloch, On degenerate Hopf bifurcation with broken O(2) symmetry, Nonlinearity 1: 617 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  27. [22]
    T. Ohta and K. Kawasaki, Euclidean invariant phase dynamics for propagating pattern, Physica 27 D: 21 (1987);MathSciNetADSGoogle Scholar
  28. [22a]
    M. Bestehorn, R. Friedrich and H. Haken, The oscillatory instability of a spatially homogeneous state in large aspect ratio systems of fluid dynamics, Z. Phys. B 72: 265 (1988).ADSCrossRefGoogle Scholar
  29. [23]
    M. Bestehorn, R. Friedrich and H. Haken, Two-dimensional traveling wave patterns in nonequilibrium systems, Z. Phys. B 75: 265 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Gerhard Dangelmayr
    • 1
  • Edgar Knobloch
    • 2
  1. 1.Institut für InformationsverarbeitungUniversität TübingenTübingenW. Germany
  2. 2.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations