Advertisement

Bound States of Interacting Localized Structures

  • Christian Elphick
  • G. R. Ierley
  • Oded Regev
  • E. A. Spiegel
Part of the NATO ASI Series book series (NSSB, volume 225)

Abstract

Localized or solitary structures are frequently formed in extended systems under the combined effects of instability and dissipation.1 The effective particle approach widely used for integrable systems2 and in quantum field theory3 can also be used for such systems. Many of the nonlinear PDEs encountered in macroscopic physics can be thus reduced to ODEs that give insight into the full problem, particularly when the original system is invariant under a continuous group. Each solitary structure is assigned a set of the group parameters and these become collective coordinates characterizing the state of the system.4,5

Keywords

Localize Structure Phase Portrait Homoclinic Orbit Group Parameter Nonlinear PDEs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Solitons and Coherent Structures edited by D. K. Campbell, A. C. Newell, R. J. Schreiffer, H. Segur, Physica (Amsterdam) 18D (1986).MATHGoogle Scholar
  2. 2.
    M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981).MATHCrossRefGoogle Scholar
  3. 3.
    R. Rajaraman, Phys. Rev. D 15, 2806 (1977).ADSCrossRefGoogle Scholar
  4. 4.
    C. Elphick and E. Meron, preprint (1989) .Google Scholar
  5. 5.
    C. Elphick and E. A. Spiegel, Proc. Summer Inst, in GFD, G. Flierl, ed. (Woods Hole Oceanographic Inst., 1989) .Google Scholar
  6. 6.
    P. Coullet, C. Elphick and D. Repaux, Phys. Rev. Lett. 58, 431 (1987) .MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    C. Elphick, E. Meron, and E. A. Spiegel, Phys. Rev. Lett. 61, 496 (1988); SIAM J. Appl. Math., in press.MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J. Topper and T. Kawahara, J. Phys. Soc. Jpn. 44, 663 (1978) .MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    G. B. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, New York, 1974) .MATHGoogle Scholar
  10. 10.
    Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984).MATHCrossRefGoogle Scholar
  11. 11.
    A. Arneodo, P. H. Coullet, E. A. Spiegel, and C. Tresser, Physica (Amsterdam) 14D, 327 (1985).MathSciNetADSGoogle Scholar
  12. 12.
    J. Evans, N. Fenichel, J. Feroe, SIAM J. Appl. Math. 42, 219 (1982), and J. Feroe ibid. 235.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    P. Coullet and C. Elphick, Phys. Lett. A 121, 233 (1987).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    P. Collet and J.-P. Eckmann, ‘Iterated Maps on the Interval, Progress in Physics Vol. 1 (Birkhäuser, Boston, 1980).MATHGoogle Scholar
  15. 15.
    S. Ton and T. Kawahara, J. Phys. Soc. (Japan) 54, 1257 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    T. Kawahara, Phys. Rev. Lett. 51, 381 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    C. S. Bretherton and E. A. Spiegel, Phys. Lett. 96A, 152 (1983).ADSGoogle Scholar
  18. 18.
    S. Fauve, Proc. Summer Inst, in GFD, G. Veronis, ed. (Woods Hole Oceanographic Inst., 1985).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Christian Elphick
    • 1
    • 2
    • 3
    • 4
  • G. R. Ierley
    • 1
    • 2
    • 3
    • 4
  • Oded Regev
    • 1
    • 2
    • 3
    • 4
  • E. A. Spiegel
    • 1
    • 2
    • 3
    • 4
  1. 1.Physics DepartmentUniversidad Técnica F. Santa MaríaValparaísoChile
  2. 2.Department of Mathematical SciencesMichigan Technological UniversityHoughtonUSA
  3. 3.Physics Department TechnionHaifaIsrael
  4. 4.Department of AstronomyColumbia UniversityNew YorkUSA

Personalised recommendations