Dimensions and Lyapunov Spectra From Measured Time Series of Taylor-Couette Flow

  • Thorsten Buzug
  • Torsten Reimers
  • Gerd Pfister
Part of the NATO ASI Series book series (NSSB, volume 225)


The extraction of Lyapunov spectra and fractal dimensions of chaotic attractors from experimental time series has become an important instrument in analyzing the dynamic properties of non linear systems [1]. Though the principle ideas are clear the practical handling of the estimation of dynamical properties depends sensitively on the quality of the reconstructed phase space of the attractor. Additionally all experimental data are covered with noise so that the algorithms used should be insensitive to external noise.


Reynolds Number Lyapunov Exponent Frequency Ratio Correlation Dimension Homoclinic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Schuster, H.G., Deterministic Chaos, An Introduction, VCH-Verlag, Weinheim (1988).Google Scholar
  2. [2]
    Takens, F., in: Dynamical Systems and Turbulence, Lecture Notes in Math. 898, D.A. Rand and L.-S. Young (eds.), Spinger Verlag, Warwick (1980).Google Scholar
  3. [3]
    Gerdts, U., DUNGDissertation, Universität Kiel (1985).Google Scholar
  4. [4]
    Pfister, G., in: G.E.A. Meier and F. Obermeier (eds.), Flow of Real Fluids, Lecture Notes in Physics 235, Springer Verlag (1985).CrossRefGoogle Scholar
  5. [5]
    Pfister, G. and Lensch, B., to be published.Google Scholar
  6. [6]
    Pfister, G., Schmidt, H., Cliffe, K.A. and Mullin, T., J. Fluid Mech., 191, 1 (1988).MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    Pfister, G., Gerdts, U., Lorenzen, A. and Schätzel, K., DUNGin: Photon Correlation Techniques in Fluid Mech., Springer Verlag (1983).Google Scholar
  8. [8]
    Liebert, W., Pawelzik, K. and Schuster, H.G., preprint, to be published in Phys. Rev. Lett. (1989).Google Scholar
  9. [9]
    Buzug, Th., Reimers, T. and Pfister, G., in preparation.Google Scholar
  10. [10]
    Chennaoui, A., Pawelzik, K., Liebert, W., Schuster, H.G. and Pfister, G., preprint (1989).Google Scholar
  11. [11]
    Eckmann, J.P. and Ruelle, D., Rev. Mod. Phys., 57, 617 (1985).MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    Sano, M. and Sawada, Y., Phys. Rev. Lett., 55, 1082 (1985).MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    Eckmann, J.P., Kamphorst, S.O., Ruelle, D. and Ciliberto, S., Phys. Rev., 34A, 4971 (1986).MathSciNetADSGoogle Scholar
  14. [14]
    Wolf, A., Swift, J.B., Swinney, H.L. and Vastano, J.A., Physica 16D, 285 (1985).MathSciNetADSGoogle Scholar
  15. [15]
    Vastano, J.A. and Kostelich, E.J., in: G. Mayer-Kress (ed.), Dimensions and Entropies in Chaotic Systems, Springer Verlag (1986).Google Scholar
  16. [16]
    Stoop, R. and Meier, P.F., J. Opt. Soc. Am. 5B, 1037 (1988).ADSGoogle Scholar
  17. [17]
    Holzfuss, J. and Lauterborn, W., Phys. Rev. 39A, 2146 (1989).ADSGoogle Scholar
  18. [18]
    Grassberger, P. and Procaccia, I., Phys. Rev. Lett. 50, 346 (1983).MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    Frederickson, P., Kaplan, J.L., Yorke, E.D. and Yorke, J.A., J. Diff. Eqns. 49, 185 (1983).MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Buzug, Th., Reimers, T., Wilkening, V. and Pfister, G., Poster 41 at the Dynamics Days Düsseldorf (1989).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Thorsten Buzug
    • 1
  • Torsten Reimers
    • 1
  • Gerd Pfister
    • 1
  1. 1.Institut für Angewandte PhysikUniversität KielWest Germany

Personalised recommendations