Two Topics in Quantum Chromodynamics

  • J. D. Bjorken
Part of the NATO ASI Series book series (NSSB, volume 223)

Abstract

Quantum chromodynamics (QCD) has reached a level of credibility and maturity which deserves textbook status. Indeed, textbooks exist1 and others are on the way.2 Nevertheless, to my mind a textbook treatment of QCD is made much more difficult than that of quantum electrodynamics (QED) because of the confinement problem. Even perturbative QCD—which is all that will really be discussed here—suffers this problem. There is no S-matrix theory of quarks and gluons as there is for QED, as given in the LSZ formalism.3 The concept of “on-mass-shell” or “asymptotic” quark and/or gluon is highly suspect. And the typical “Feynman diagram” used in perturbative QCD contains internal quark and gluon lines and external hadron lines. What does that really mean? How does one derive and justify Feynman-rules for such amplitudes in the absence of good control over the confinement question?

Keywords

Assure Convolution Calorimeter Malon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Yndurain, “Quantum Chromodynamics,” Springer-Verlag, New York (1983).MATHGoogle Scholar
  2. 2.
    R. Field, “Applications of Perturbative QCD,” Addison-Wesley (1989); M. Peskin and D. Schroeder, in preparation.Google Scholar
  3. 3.
    As might be anticipated, I have in mind the line of argument presented in J. Bjorken and S. Drell, “Relativistic Quantum Fields,” McGraw-Hill, New York (1965), chs. 16–17.MATHGoogle Scholar
  4. 4.
    More discussion of essentially this point of view can be found in some old lectures of mind; cf. J. Bjorken, Proc. of the SLAC Summer Institute on Particle Physics, Stanford, CA (1979), A. Mosher, ed.; SLAC-REP-224; also preprint SLAC-PUB-2372.Google Scholar
  5. 5.
    E. Poggio, H. Quinn, and S. Weinberg, Phys. Rev. D13:1958 (1976).ADSGoogle Scholar
  6. 6.
    V. Fadin, V. Khose, and T. Sjostrand, CERN Preprint CERN-TH-5394/89.Google Scholar
  7. 7.
    R. P. Feynman, Proc. of the Int. Conf. on High Energy Physics, Aix-en-Provence, vol. 2, E. Cremien-Alcan et al., ed., Saclay, France (1961).Google Scholar
  8. 8.
    S. Gorishny, A. Kataev, and S. Larin, Phys. Lett, B212:238 (1988).ADSGoogle Scholar
  9. 9.
    See, for example, G. Thooft, “The Whys of Subnuclear Physics, Erice 1977,” A. Zichichi, ed., Plenum, New York (1977);Google Scholar
  10. 9a.
    G. Parisi, Nucl. Phys. B150:163 (1979)ADSCrossRefGoogle Scholar
  11. 9b.
    A. Mueller, Nucl. Phys. B250:327 (1985); G. West, Los Alamos preprint LA-UR-89–3785.MathSciNetADSCrossRefGoogle Scholar
  12. 10.
    For a recent review, see S. Maxfield, Proc. of the XXIV Int. Conf. on High Energy Physics, Munich 1988, Springer-Verlag, Berlin, Heidelberg (1989), p. 661.Google Scholar
  13. 11.
    An especially complete treatment is given by G. Rossi, U.C. San Diego preprint UCSD-10P10–227.Google Scholar
  14. 12.
    T. Walsh and P. Zerwas, Nucl Phys. B41:551 (1972)ADSCrossRefGoogle Scholar
  15. 12a.
    T. Walsh and P. Zerwas, Phys. Lett. 44B:195 (1973);ADSGoogle Scholar
  16. 12b.
    R. Kingsley, Nucl. Phys. B60:45 (1973).ADSCrossRefGoogle Scholar
  17. 13.
    G. Altarelli and G. Parisi, Nucl Phys. B126:298 (1977); see also J. Stirling’s lectures, these proceedings.ADSCrossRefGoogle Scholar
  18. 14.
    E. Witten, Nucl Phys. B120:189 (1977).ADSCrossRefGoogle Scholar
  19. 15.
    W. Bardeen and A. Buras, Phys. Rev. D20:166 (1979)ADSGoogle Scholar
  20. 15a.
    D. Duke and J. Owens, Phys. Rev. D22:2280 (1980).ADSGoogle Scholar
  21. 16.
    T. Uematsu and T. Walsh, Phys. Lett 101B:263 (1981ADSGoogle Scholar
  22. 16a.
    T. Uematsu and T. Walsh, Nucl Phys. B199:93 (1982).ADSCrossRefGoogle Scholar
  23. 17.
    Muta’s book, reference 1, contains a thorough exposition.Google Scholar
  24. 18.
    More details can be found in Bjorken and Drell, Ref. 4, Chap. 18.Google Scholar
  25. 19.
    Analyticity in P 2 has recently been utilized by A. Gorski and B. Ioffe, University of Bern preprint BUTP-89/12.Google Scholar
  26. 20.
    At least to me. This follows either from inspection or from the realization that ρ satisfies the usual renormalization group equation without an inhomogeneous term.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. D. Bjorken
    • 1
  1. 1.Stanford Linear Accelerator CenterStanford UniversityStanfordUSA

Personalised recommendations