Advertisement

Physics with High Energy Ion Beams

  • Peter Sonderegger
Part of the NATO ASI Series book series (NSSB, volume 223)

Abstract

With the recent advent of ultrarelativistic ion beams, a new frontier has become open to scrutiny: the physics at high energy density. It is at an energy density high enough above nuclear energy density (0.15 GeV/fm3) that matter is expected, by QCD, to exist in a quark-gluon plasma (QGP) phase. If the phase transition is of first order, a mixed phase would exist, with QGP bubbles in a hadron gas. The quest of the quark-gluon plasma is the main goal of experiments with high energy ion beams.

Keywords

Transverse Energy Quark Matter Central Collision Direct Photon Final State Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Hagedorn, Suppl. Nuovo Cim. 2 (1965) 147; also preprint TH-3014-CERN (1980); Riv. Nuovo Cim. 6 (1983) 1.Google Scholar
  2. [2]
    Reviewed in H. Satz, ed., Statistical mechanics of quarks and hadrons, Bielefeld Symposium, 1980 (North Holland, 1981).Google Scholar
  3. [3]
    QCD on a lattice: K.G. Wilson, Phys. Rev. D10 (1974) 2445.ADSGoogle Scholar
  4. [3a]
    Monte Carlo: M. Creutz, Phys. Rev. Lett. 45 (1980) 313.ADSCrossRefGoogle Scholar
  5. [3b]
    Phase transition: T. Celik et al., Phys. Lett. 125B (1983) 411,ADSGoogle Scholar
  6. [3c]
    Phase transition: J. Kogut et al., Phys. Rev. Lett. 50 (1983) 393.ADSCrossRefGoogle Scholar
  7. [4]
    K. Redlich, H. Satz, Phys. Rev. D33 (1986) 3747.ADSGoogle Scholar
  8. [5]
    Th. DeGrand, Quark Matter ‘84 Proceedings (Springer 1985), p. 17CrossRefGoogle Scholar
  9. [6]
    P. Bacilieri et al., Phys. Rev. Lett. 14 (1988) 1545ADSCrossRefGoogle Scholar
  10. [6a]
    P. Bacilieri et al., Phys. Lett. B224 B224 (1989) 333;ADSGoogle Scholar
  11. [6b]
    N. Christ et al., Phys. Rev. Lett. 14 (1988) 2050;Google Scholar
  12. [6c]
    J.B. Kogut, D.K. Sinclair, Phys. Lett. B229 (1989) 107.ADSGoogle Scholar
  13. [7]
    P. Koch, B. Muller, J. Rafelski, Phys. Rep. 142 (1986) 167.ADSCrossRefGoogle Scholar
  14. [8]
    J.D. Bjorken, Phys. Rev. D27 (1983) 140.ADSGoogle Scholar
  15. [9]
    L.D. Landau, Izv. Akad. Nauk. SSSR 17 (1953) 51.Google Scholar
  16. [10]
    M. Faessler, Nucl. Phys. A434 (1985) 563c.ADSGoogle Scholar
  17. [11]
    T. Burnett et al., Phys. Rev. Lett. 57 (1986) 3249; also 50 (1983) 2062.ADSCrossRefGoogle Scholar
  18. [12]
    Proc. Internat. Conf. on Nucleus-Nucleus Collisions, St.Malo, France, 6–11 June 1988, GANIL, Caen, France (1988); and Nucl. Phys. A488 (1988).Google Scholar
  19. [13]
    H.A. Gustafsson et al., Phys. Rev. Lett. 52 (1984) 1590.ADSCrossRefGoogle Scholar
  20. [14]
    H. Von Gersdorff et al. (KLM collab.), Phys. Rev. C39 (1989) 1385.ADSGoogle Scholar
  21. [15]
    C. DeMaizo et al., Phys. Rev. D26 (1982) 1019;ADSGoogle Scholar
  22. [15a]
    C. DeMaizo et al., Phys. Rev. 29 (1984) 363;ADSGoogle Scholar
  23. [15b]
    C. DeMaizo et al., Phys. Rev. 29 (1984) 2476.ADSGoogle Scholar
  24. [16]
    J. Schukraft et al., Nucl. Phys. A498 (1989) 79c; see also Proc. 24th Rencontres de Moriond (1989), to be published.ADSGoogle Scholar
  25. [17]
    G.R. Young et al., Nucl. Phys. A498 (1989) 53c.ADSGoogle Scholar
  26. [18]
    R. Hanbury-Twiss, R.Q. Brown, Phil. Mag. 45 (1954) 663.Google Scholar
  27. [19]
    G. Goldhaber et al., Phys. Rev. 120 (1960) 300.MathSciNetADSCrossRefGoogle Scholar
  28. [20]
    T.J. Humanic et al., Z. Phys. C79 (1988) 79.Google Scholar
  29. [21]
    K.S. Lee et al., Phys. Rev. C37 (1988) 1452.ADSGoogle Scholar
  30. [22]
    Y. Miake et al., Z. Phys. C138 (1988) 135;Google Scholar
  31. [22a]
    T. Abbott et al., Nucl. Phys. A498 (1989) 67c.MathSciNetADSGoogle Scholar
  32. [23]
    M. Gazdzicki et al., Nucl.Phys. A498 (1989) 375c.ADSGoogle Scholar
  33. [24]
    A. Bamberger et al., Z. Phys. C43 (1989) 25.ADSGoogle Scholar
  34. [25]
    P. Sonderegger et al., Z. Phys. C38 (1988) 129.ADSGoogle Scholar
  35. [26]
    D. Antreasyan et al., Phys. Rev. D19 (1979) 764.ADSGoogle Scholar
  36. [27]
    G. Bertsch et al., Phys. Rev. D37 (1988), 1202.ADSGoogle Scholar
  37. [28]
    K.S. Lee, U. Heinz, Z. Phys. C43 (1989) 425.ADSGoogle Scholar
  38. [29]
    E.L. Feinberg, Izv. Akad. Nauk Ser. Fiz. 26 (1962) 62;Google Scholar
  39. [29a]
    E.L. Feinberg, Nuovo Cim. 34A (1976) 391.Google Scholar
  40. [30]
    E.V. Shuryak, Phys. Lett. 78B (1978) 150.ADSGoogle Scholar
  41. [31]
    P.V. Chliapnikov et al., Phys. Lett. 141B (1984) 276.ADSGoogle Scholar
  42. [32]
    U. Goerlach et al., in “XXIV Conference on High Energy Physics, Munich, August 4 – 10, 1988”, Springer Verlag, 1989, p. 1412.Google Scholar
  43. [33]
    T. Akesson et al., preprint CERN-EP/89–113; subm. to Z. Phys. C.Google Scholar
  44. [34]
    H. Gutbrod, private communication (June 1989).Google Scholar
  45. [35]
    K. Kajantie and P.V. Ruuskanen, Z. Phys. C44 (1989) 167.Google Scholar
  46. [36]
    T. Matsui, H. Satz, Phys. Lett. 178B (1986) 416.ADSGoogle Scholar
  47. [37]
    C. Baglin et al., Phys. Lett. B220 (1989) 471.ADSGoogle Scholar
  48. [38]
    J.Y. Grossiord et al., Nucl. Phys. A498 (1989) 249c.ADSGoogle Scholar
  49. [39]
    P. Sonderegger, in “XXIV Conference on High Energy Physics, Munich, August 4–10, 1988”, Springer Verlag, 1989, p. 1369.Google Scholar
  50. [40]
    The subject is reviewed, and references given, in R.A. Salmeron, “The Suppression of the J/Ψ.”, Ecole Polytechnique preprint (1989), to be published in Proc. 24th Rencontres de Moriond.Google Scholar
  51. [41]
    A. de Rujula et al., Phys. Rev. D17 (1978) 285.ADSGoogle Scholar
  52. [42]
    R. Slansky et al., Phys. Rev. Lett. 47 (1981) 887.ADSCrossRefGoogle Scholar
  53. [43]
    E. Witten, Phys. Rev. D30(1984) 272.MathSciNetADSGoogle Scholar
  54. [44]
    E. Farhi and R.L. Jaffe, Phys. Rev. D30 (1984) 2379; see also ref. GRE88.ADSGoogle Scholar
  55. [45]
    C. Alcock, A. Olinto, Ann. Rev. Nucl. Part. Sci. 38 (1988) 161.ADSCrossRefGoogle Scholar
  56. [46]
    C. Alcock et al., Phys. Rev. D39 (1989) 1233.ADSGoogle Scholar
  57. [47]
    J.A. Frieman, A. Olinto, preprint Fermilab Pub 88–129 A.Google Scholar
  58. [48]
    J.A. Kristian et al., Nature 338 (1989) 234.ADSCrossRefGoogle Scholar
  59. [49]
    A. de Rujula et al., Nature 312 (1984) 734.ADSCrossRefGoogle Scholar
  60. [50]
    M. Brügger et al., Nature 337 (1989) 434.ADSCrossRefGoogle Scholar
  61. [51]
    H.C. Liu et al., Phys. Rev. D30 (1984) 1137.ADSGoogle Scholar
  62. [52]
    C. Greiner et al., Z.Phys. C38 (1988) 283.ADSGoogle Scholar
  63. [53]
    G.L. Shaw et al., Nature 337 (1989) 463.CrossRefGoogle Scholar
  64. [54]
    T. Alexopoulos et al., Phys. Rev. Lett. 60 (1988) 1622.ADSCrossRefGoogle Scholar
  65. [55]
    M. Drees, J.V. Ellis, D. Zeppenfeld, Phys. Lett. B223 (1989) 454, which references the original work of E. Papageorgiu and M. Grabiak et al.ADSGoogle Scholar
  66. [56]
    J.C. Hill et al., Phys. Rev. Lett. 60 (1988) 999.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Peter Sonderegger
    • 1
  1. 1.CERNGenevaSwitzerland

Personalised recommendations