Advertisement

Production and Decay of Z Bosons at the SLC

  • G. J. Feldman
Part of the NATO ASI Series book series (NSSB, volume 223)

Abstract

My lectures at Cargèse covered the very first physics results from the SLAC Linear Collider (SLC). At the time of this writing (December 1989), it seems most sensible to present a review of the results that were presented at the school in an updated form. The organization of this report will be to give a brief introduction to linear colliders and the SLC, then to describe the MARK II detector, and finally to review the current status of the three major physics topics discussed at Cargèse:
  1. 1.

    the Z line shape, from which we deduce the Z mass and width, and the number of neutrino species,

     
  2. 2.

    the partonic structure of hadronic decays and a measurement of α s , and

     
  3. 3.

    searches for new quarks and leptons.

     

Keywords

Storage Ring Linear Collider Charged Higgs Boson Hadronic Decay Drift Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Richter, Nucl. Instrum. Meth. 136:47 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    The nine MARK II institutions are: California Institute of Technology, University of California at Santa Cruz, University of Colorado, University of Hawaii, Indiana University, Johns Hopkins University, Lawrence Berkeley Laboratory, University of Michigan, and Stanford Linear Accelerator Center. The present members of the collaboration are: G. S. Abrams, C. E. Adolphsen, R. Aleksan, J. P. Alexander, D. Averill, J. Ballam, B. C. Barish, T. Barklow, B. A. Barnett, J. Bartelt, S. Bethke, D. Blockus, W. de Boer, G. Bonvicini, A. Boyarski, B. Brabson, A. Breakstone, F. Bulos, P. R. Burchat, D. L. Burke, R. J. Cence, J. Chapman, M. Chmeissani, D. Cords, D. P. Coupai, P. Dauncey, H. C. DeStaebler, D. E. Dorfan, J. M. Dorfan, D. C. Drewer, R. Elia, G. J. Feldman, D. Fernandes, R. C. Field, W. T. Ford, C. Fordham, R. Frey, D. Fujino, K. K. Gan, C. Gatto, E. Gero, G. Gidal, T. Glanzman, G. Goldhaber, J. J. Gomez Cadenas, G. Gratta, G. Grindhammer, P. Grosse-Wiesmann, G. Hanson, R. Harr, B. Harral, F. A. Harris, C. M. Hawkes, K. Hayes, C. Hearty, C. A. Heusch, M. D. Hildreth, T. Himel, D. A. Hinshaw, S. J. Hong, D. Hutchinson, J. Hylen, W. R. Innes, R. G. Jacobsen, J. A. Jaros, C. K. Jung, J. A. Kadyk, J. Kent, M. King, S. R. Klein, D. S. Koetke, S. Komamiya, W. Koska, L. A. Kowalski, W. Kozanecki, J. F. Kral, M. Kuhlen, L. Labarga, A. J. Lankford, R. R. Larsen, F. Le Diberder, M. E. Levi, A. M. Litke, X. C. Lou, V. Lüth, G. R. Lynch, J. A. McKenna, J. A. J. Matthews, T. Mattison, B. D. Milliken, K. C. Moffeit, C. T. Munger, W. N. Murray, J. Nash, H. Ogren, K. F. O’Shaughnessy, S. I. Parker, C. Peck, M. L. Perl, F. Perrier, M. Petradza, R. Pitthan, F. C. Porter, P. Rankin, K. Riles, F. R. Rouse, D. R. Rust, H. F. W. Sadrozinski, M. W. Schaad, B. A. Schumm, A. Seiden, J. G. Smith, A. Snyder, E. Soderstrom, D. P. Stoker, R. Stroynowski, M. Swartz, R. Thun, G. H. Trilling, R. Van Kooten, P. Voruganti, S. R. Wagner, S. Watson, P. Weber, A. Weigend, A. J. Weinstein, A. J. Weir, E. Wicklund, M. Woods, G. Wormser, D. Y. Wu, M. Yurko, C. Zaccardelli, and C. von Zanthier.Google Scholar
  3. 3.
    G. S. Abrams et al., Nucl. Instrum. Meth. A281:55 (1989).ADSGoogle Scholar
  4. 4.
    G. G. Hanson, Nucl. Instrum. Meth. A252:343 (1986).ADSGoogle Scholar
  5. 5.
    G. S. Abrams et al., IEEE Trans. Nucl Sci. NS-25:309 (1978)MathSciNetADSCrossRefGoogle Scholar
  6. 5a.
    G. S. Abrams et al., IEEE Trans. Nucl Sci. NS-27:59 (1980).ADSCrossRefGoogle Scholar
  7. 6.
    G. S. Abrams et al., Phys. Rev. Lett. 63:2173 (1989).ADSCrossRefGoogle Scholar
  8. 7.
    J. Kent et al., SLAC-PUB-4922 (1989);Google Scholar
  9. 7a.
    M. Levi, J. Nash, and S. Watson, SLAC-PUB-4654 (1989);Google Scholar
  10. 7b.
    M. Levi et al., SLAC-PUB-4921 (1989).Google Scholar
  11. 8.
    F. A. Berends, R. Kleiss, and W. Hollik, Nucl. Phys. B304:712 (1988);ADSCrossRefGoogle Scholar
  12. 8a.
    S. Jadach and B. F. L. Ward, University of Tennessee report UTHEP-88–11–01 (1988).Google Scholar
  13. 9.
    R. N. Cahn, Phys. Rev. D36:2666 (1987), Eqs. (4.4) and (3.1).ADSGoogle Scholar
  14. 10.
    J. Alexander et al., Phys. Rev. D37:56 (1988).ADSGoogle Scholar
  15. 11.
    Calculated using the program EXPOSTAR, assuming m t = m H = 100 GeV/c2. D. C. Kennedy et al., Nucl Phys. B321:83 (1989).ADSCrossRefGoogle Scholar
  16. 12.
    A. Sirlin, Phys. Rev. D22:2695 (1980).ADSGoogle Scholar
  17. 13.
    G. S. Abrams et al., Phys. Rev. Lett. 63:1558 (1989).ADSCrossRefGoogle Scholar
  18. 14.
    T. Sjöstrand, Comput. Phys. Commun. 39:347 (1986);ADSCrossRefGoogle Scholar
  19. 14a.
    T. Sjöstrand and M. Bengtsson, Comput. Phys. Commun. 43:367 (1987);ADSCrossRefGoogle Scholar
  20. 14b.
    M. Bengtsson and T. Sjöstrand, Nucl. Phys. B289:810 (1987).ADSCrossRefGoogle Scholar
  21. 15.
    G. Marchesini and B. R. Webber, Nucl. Phys. B238:l (1984);Google Scholar
  22. 15a.
    B. R. Webber, Nucl. Phys. B238:492 (1984).ADSCrossRefGoogle Scholar
  23. 16.
    T. D. Gottschalk and D. Morris, Nucl. Phys. B288:729 (1987).ADSCrossRefGoogle Scholar
  24. 17.
    T. D. Gottschalk and M. P. Shatz, Phys. Lett. 150B:451 (1985); Caltech reports CALT-68–1172, -1173, -1199 (1985).ADSGoogle Scholar
  25. 18.
    W. Bartel et al., Z. Phys. C43:325 (1986).ADSGoogle Scholar
  26. 19.
    A. Petersen et al., Phys. Rev. D37:l (1988);Google Scholar
  27. 19a.
    S. Bethke et al., Z. Phys. C43:325 (1989).ADSGoogle Scholar
  28. 20.
    C. Berger et al., Z. Phys. C12:297 (1982).ADSGoogle Scholar
  29. 21.
    M. Althoff et al., Z. Phys. C22:307 (1984).ADSGoogle Scholar
  30. 22.
    D. Bender et al., Phys. Rev. D31:31 (1985).MathSciNetADSGoogle Scholar
  31. 23.
    S. Bethke et al., Phys. Lett. B213:235 (1988).ADSGoogle Scholar
  32. 24.
    W. Braunschweig et al., Z. Phys. C41:359 (1988);Google Scholar
  33. 24a.
    W. Braunschweig et al., Phys. Lett. B214:286 (1988).ADSGoogle Scholar
  34. 25.
    I.H. Park et al., Phys. Rev. Lett. 62:1713 (1989).ADSCrossRefGoogle Scholar
  35. 26.
    H.J. Behrend et al., DESY Preprint 89–019 (1989).Google Scholar
  36. 27.
    Y. K. Li et al., KEK Preprint 89–34 (1989); Y. K. Li, S. Olsen (private communication).Google Scholar
  37. 28.
    S. Komamiya et al., SLAC-PUB-5137 (1989).Google Scholar
  38. 29.
    G. Kramer and B. Lampe, Fortschr. Phys. 37:161 (1989)CrossRefGoogle Scholar
  39. 30.
    G. S. Abrams et al., Phys. Rev. Lett. 63:2447 (1989).ADSCrossRefGoogle Scholar
  40. 31.
    V. Barger et al., Phys. Rev. D30:947 (1984);ADSGoogle Scholar
  41. 31a.
    V. Barger et al., Phys. Rev. Lett. 57:1518 (1986);ADSCrossRefGoogle Scholar
  42. 31b.
    W. Hou and R. G. Stuart, Phys. Rev. Lett. 62:617 (1989).ADSCrossRefGoogle Scholar
  43. 32.
    C. K. Jung et al., SLAC-PUB-5136 (1989).Google Scholar
  44. 33.
    C. Wendt et al., Phys. Rev. Lett. 58:1810 (1987).ADSCrossRefGoogle Scholar
  45. 34.
    M. Gronau, C. N. Leung, and J. L. Rosner, Phys. Rev. D29:2359 (1984);Google Scholar
  46. 34a.
    V. Barger, W. Y. Keung, and R. J. Phillips, Phys. Lett. B141:126 (1984).ADSGoogle Scholar
  47. 35.
    N. M. Shaw et al., Phys. Rev. Lett. 63:1342 (1989).ADSCrossRefGoogle Scholar
  48. 36.
    H.-J. Behrend et al., Z. Phys. C41:7 (1988).Google Scholar
  49. 37.
    F. J. Gilman and S. H. Rhie, Phys. Rev. D32:324 (1985).ADSGoogle Scholar
  50. 38.
    C. Albajar et al., Z. Phys. C37:505 (1988).ADSGoogle Scholar
  51. 39.
    F. Abe et al., University of Pennsylvania Report UPR-0172E.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • G. J. Feldman
    • 1
  1. 1.Stanford Linear Accelerator CenterStanford UniversityStanfordUSA

Personalised recommendations