Advertisement

Solid-State Ion Exchange - Phenomenon and Mechanism

  • H. G. Karge
  • V. Mavrodinova
  • Z. Zheng
  • H. K. Beyer
Part of the NATO ASI Series book series (NSSB, volume 221)

Abstract

Highly exchanged MeI-Y (MeI = Li, Na, K, Rb, Cs) as well as La-Y zeolites were prepared through solid-state ion exchange between NH4-Y (98%) and the respective chlorides. It was shown that, except for the case of Li-Y, both low- temperature and high-temperature exchange processes occurred. With the system MeICl/NH4-Y the high-temperature reaction seemed to proceed more easily the lower the lattice energy of the alkaline chloride. In La-Y, the bare La3+ ions introduced via solid-state ion exchange were catalytically inactive. However, La-Y obtained via solid-state ion exchange was rendered an active catalyst for both ethylbenzene disproportionation and n-decane cracking after a brief contact with traces of water vapor. For the solid-state reaction itself, the presence of water is not a prerequisite.

Keywords

Pyridine Adsorption Ethylbenzene Conversion Alkaline Chloride Respective Chloride Ethylbenzene Disproportionation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Rabo, M. Poutsma, and G. W. Skeels, New zeolite-salt adducts and their catalytic properties, in: “Proc. 5th Int. Congr. Catalysis”, J. W. Hightower, ed., North-Holland Publ., New York (1973).Google Scholar
  2. 2.
    A. Clearfield, C. H. Saldariagga, and R. C. Buckley, Ion exchange between solids. II. Zeolites, in: “Proc. 3rd Int. Conf. Molecular Sieves”, J. B. Uytterhoeven, ed., Leuven University Press, Leuven (1973).Google Scholar
  3. 3.
    J. A. Rabo, “Salt occlusion in zeolite crystals”, ACS Monograph, The American Chemical Society, Washington (1976).Google Scholar
  4. 4.
    H. K. Beyer, G. Borbely, and H. G. Karge, Solid-state ion exchange in zeolites. I. Alkaline chlorides/ZSM-5, Zeolites 8: 79 (1988).Google Scholar
  5. 5.
    H. G. Karge, H. K. Beyer, and G. Borbely, Solid-state ion exchange in zeolites. II. Alkaline earth chlorides/mordenite, Catalysis Today 3: 41 (1988).Google Scholar
  6. 6.
    H. G. Karge, H. K. Beyer, G. Borbely, and G. Onyestyak, Solid-state ion exchange in zeolites. HI. Preparation and test of lanthanum zeolite catalysts, in: “Proc. 9th Int. Congr. Catalysis”, M. J. Phillips and M. Ternan, eds., The Chemical Institute of Canada, Ottawa (1988).Google Scholar
  7. 7.
    G. Borbely, H. K. Beyer, H. G. Karge, L. Radics, and P. Sandor, Solid-state ion exchange in zeolites. IV. Evidence for contact-induced ion exchange between hydrated NaY zeolite and metal chlorides, Zeolites accepted.Google Scholar
  8. 8.
    A. V. Kueherov and A. A. Slinkin, Introduction of transition metal ions in cationic positions of high-silica zeolites by a solid-state reaction. Interaction of copper compounds with H-mordenite or H-ZSM-5, Zeolites 6: 175 (1986).Google Scholar
  9. 9.
    A. V. Kucherov and A. A. Slinkin, Introduction of Cr(V), Mo(V) and V(IV) ions in cationic positions of high-silica zeolites by a solid-state reaction, Zeolites 7: 38 (1987).Google Scholar
  10. 10.
    G. H. Kiihl, A study of aluminium coordination in zeolites using the Kß line, in: “Proc. 3rd Int. Conf. Molecular Sieves”, J. B. Uytterhoeven, ed., Leuven University Press, Leuven (1973).Google Scholar
  11. 11.
    H. G. Karge, K. Hatada, Y. Zhang, and R. Fiedorow, Conversion of alkyl-benzenes over zeolite catalysts. II. Disproportionation of ethylbenzene over faujasite-type zeolites, Zeolites 3: 13 (1983).Google Scholar
  12. 12.
    D. Keir, E. F. T. Lee, and L. V. C. Rees, Catalytic activity of differently prepared, fully exchanged lanthanum Y zeolites, Zeolites 8: 228 (1988).CrossRefGoogle Scholar
  13. 13.
    St. Hocevar and B. Drzaj, Ion exchange in zeolites at high temperatures, in: “Proc. 5th Int. Conf. Zeolites”, L. V. Rees, ed., Heyden, London (1980).Google Scholar
  14. 14.
    I. N. Stranski, Zur Theorie des Kristallwachstums, Z. phys. Chem. 136: 259 (1928).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • H. G. Karge
    • 1
  • V. Mavrodinova
    • 1
    • 2
  • Z. Zheng
    • 1
    • 3
  • H. K. Beyer
    • 1
    • 4
  1. 1.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlin 33 (West)Deutschland
  2. 2.Institute of Organic ChemistryBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Changchun Institute of Applied ChemistryAcademia SinicaChina
  4. 4.Central Research Institute for ChemistryHungarian Academy of SciencesBudapestHungary

Personalised recommendations