A 13C - and 129Xe-NMR Study of the Role of Tetraalkylammonium Cations in the Synthesis of High-Silica Zeolites

  • Q. Chen
  • J. B. Nagy
  • J. Fraissard
  • J. El Hage-Al Asswad
  • Z. Gabelica
  • E. G. Derouane
  • R. Aiello
  • F. Crea
  • G. Giordano
  • A. Nastro
Part of the NATO ASI Series book series (NSSB, volume 221)

Abstract

The high silica gel is well organized around the tetraalkylammonium (TAA) cations during prenucleation stage. By combined 13C- and 129Xe- NMR, two TAA+ states, either hydrated or dehydrated, and three different TAA-gel associations can clearly be distinguished:
  1. 1.

    dispersed monomelic or dimeric (either hydrated or dehydrated) TAA+ species (1–2 cations per cavity, cavity diameter ~11–16 Å)

     
  2. 2.

    less dispersed TAA+ ions (4–8 ions per cavity, cavity diameter ~17–23 Å)

     
  3. 3.

    large aggregates (TAAX)n (X=OH, Br) (n gt; 15 per cavity, cavity diameter ~30–40 Å)

     

The addition of alkali cations can influence both the dispersion of TAA+ species and silica gels, hence the crystallization of zeolites. A model is proposed to explain the role of different species in gels for the crystallization of high silica zeolites.

Keywords

Crystallization Hydrate Zeolite Calcination Alkalinity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, e. g. B. M. Lok, T. R. Cannan and C. A. Messina, Zeolites. 3: 282 (1983).CrossRefGoogle Scholar
  2. 2.
    N. Dewaele, L. Maistriau, J. B. Nagy, Z. Gabelica and E. G. Derouane, Appl. Catal., 37: 273 (1988).CrossRefGoogle Scholar
  3. 3.
    J. P. Van den Berg, P. C. de Jong-Versloot, J. Keijsper and M. F. M. Post, Stud. Surf. Sci. Catal., 37: 85 (1986).CrossRefGoogle Scholar
  4. 4.
    J. B. Nagy, P. Bodart, E. G. Derouane, Z. Gabelica and A. Nastro, Stud. Surf. Sci. Catal., 28: 231 (1986).CrossRefGoogle Scholar
  5. 5.
    L. S. Dent Glasser and G. Harvey, J. Chem. Soc., Chem. Commun., 1250 (1984).Google Scholar
  6. 6.
    E. G. Derouane, J. B. Nagy, Z. Gabelica and N. Blom, Zeolites. 2: 299 (1982).CrossRefGoogle Scholar
  7. 7.
    Z. Gabelica, J. B. Nagy, P. Bodart, N. Dewaele and A. Nastro, Zeolites. 7: 67 (1987).CrossRefGoogle Scholar
  8. 8.
    T. Ito, J. Fraissard, J. B. Nagy, N. Dewaele, Z. Gabelica, A. Nastro and E. G. Derouane, in Proc. 8th Intern. Zeolite Conference. Amsterdam. 1989. in press.Google Scholar
  9. 9.
    F. Crea, J. B. Nagy, A. Nastro, G. Giordano and R. Aiello, Thermochim. Acta., 135: 353 (1988).CrossRefGoogle Scholar
  10. 10.
    J. Demarquay and J. Fraissard, Chem. Phvs. Lett., 136: 314 (1987).CrossRefGoogle Scholar
  11. 11.
    E. G. Derouane and J. B. Nagy, Chem. Phvs. Lett., 137: 341 (1987).CrossRefGoogle Scholar
  12. 12.
    J. B. Nagy, Z. Gabelica and E. G. Derouane, Zeolites. 3: 43 (1983).CrossRefGoogle Scholar
  13. 13.
    P. A. Jacobs, E. G. Derouane and J. Weitkamp, J. Chem. Soc., Chem. Commun. 591 (1981).Google Scholar
  14. 14.
    Z. Gabelica, J. B. Nagy and G. Debras, J. Catal., 84: 256 (1983).CrossRefGoogle Scholar
  15. 15.
    E. G. Derouane, S. Detremmerie, Z. Gabelica and N. Blom, Appl. Catal., 1: 201 (1981)CrossRefGoogle Scholar
  16. 16.
    T. Ito, M. A. Springuel-Huet and J. Fraissard, Zeolites. 9: 68 (1989)CrossRefGoogle Scholar
  17. 17.
    J. L. Schlenker, W. J. Rohrbaugh, P. Chu, E. W. Valyocsik and G. T. Kokotailo, Zeolites. 5: 355 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Q. Chen
    • 1
  • J. B. Nagy
    • 2
  • J. Fraissard
    • 1
  • J. El Hage-Al Asswad
    • 2
  • Z. Gabelica
    • 2
  • E. G. Derouane
    • 2
  • R. Aiello
    • 3
  • F. Crea
    • 3
  • G. Giordano
    • 3
  • A. Nastro
    • 3
  1. 1.Laboratoire de Chimie des Surfaces, URA CNRS 870Université Pierre et Marie CurieParis Cédex 05France
  2. 2.Laboratoire de CatalyseFacultés Universitaires Notre-Dame de la PaixNamur.Belgium
  3. 3.Dipartimento di ChimicaUniversità della CalabriaRende.Italy

Personalised recommendations