New Mobilizing and Templating Agents in the Synthesis of Crystalline Microporous Solids

  • J. L. Guth
  • P. Caullet
  • A. Seive
  • J. Patarin
  • F. Delprato
Part of the NATO ASI Series book series (NSSB, volume 221)


The structure of crystalline microporous solids, such as zeolites1 and molecular sieves2, consists of:
  • a framework TO2 (T = Si, Al, P…), each T04 tetrahedron being linked to four others through T-O-T bridges

  • regular micropores of molecular size (containing species such as cations, water, ionic pairs) which communicate with the environment.


Fluoride Complex Zeolite Synthesis Monosilicic Acid Aluminate Anion Aluminosilicate Zeolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Breck, “Zeolite Molecular Sieves”, John Riley and Sons, New-York (1974)Google Scholar
  2. 2.
    A. Dyer, “An introduction to Zeolite Molecular Sieves”, John Hiley and Sons, Chichester (1988)Google Scholar
  3. 3.
    P. Caullet, J. L. Guth and R. Hey, Solubilité et grandeurs thermodynamiques de dissolution des zeolites 4A et 13X dans des solutions aqueuses basiques, Bull. Minéral., 103: 330 (1980)Google Scholar
  4. 4.
    P. Caullet, J. L. Guth and R. Hey, Solubilité de la zéolite Y et de 1’ analcite dans des solutions aqueuses basiques. Grandeurs thermodynamiques de dissolution, C. R. Acad. Se. Paris, Série D, 291: 117 (1980)Google Scholar
  5. 5.
    G. T. Kerr, Chemistry of crystalline aluminosilicates. I. Factors affecting the formation of zeolite A, J. Phys. Chem., 70: 1047 (1966)CrossRefGoogle Scholar
  6. 6.
    S. P. Zhdanov, Some problems of zeolite crystallization, in “Molecular Sieve Zeolites. I. Advances in chemistry series N°101”, E. M. Flanigen and L. B. Sand, ed., American Chemical Society, Hashington (1971)Google Scholar
  7. 7.
    P. Henqin, S. Ueda and M. Koizumi, The synthesis of zeolite Na A from homogeneous solutions and studies of its properties, in “New developments in zeolite science and technology”, Y. Murakami, A. Iijima, J. R. Hard, ed., Kodansha-Elsevier, Tokyo (1986)Google Scholar
  8. 8.
    P. Caullet, J. L. Guth, G. Hurtrez and R. Hey, Contribution à l’étude du mécanisme de formation des zéolites. V. Cristallisation de zéoli-tes à partir de solutions d’aluminosilicates caractérisées par un rapport Si/Al égal à 1, Bull. Soc. Chim. Fr., 7–8: 253 (1981)Google Scholar
  9. 9.
    P. Caullet and J. L. Guth, Contribution à 1’ étude du mécanisme de formation des zéolites: les équilibres solutions-zéolites; les espèces et structures des solutions, Thesis, Mulhouse, France (1983)Google Scholar
  10. 10.
    G. Engelhardt and D. Michel, “High-resolution solid-state NMR of silicates and zeolites”, John Hiley and Sons, Chichester (1987)Google Scholar
  11. 11.
    P. Caullet and J. L. Guth, 1989, Observed and calculated silicate and aluminosilicate concentrations in alkaline aqueous solutions, in “Zeolite synthesis”, ACS Symposium Series n°398, M. L. Occelli and H. E. Robson, eds., American Chemical Society, Hashington(1989)Google Scholar
  12. 12.
    R. M. Barrer, “Hydrothermal chemistry of zeolites”, Academic Press, London (1982)Google Scholar
  13. 13.
    J. L. Casci and B. M. Lone, Use of pH-measurements to monitor zeolite crystallization, Zeolites, 3: 186 (1983)CrossRefGoogle Scholar
  14. 14.
    J. L. Guth, P. Caullet and R. Hey, Variation du paramètre cristallin df une zeolite Y au cours de sa cristallisation à partir d’un gel. Mise en évidence d’une hétérogénéité de composition, Bull. Soc. Fr. Minér. Cristall., 99: 21 (1976)Google Scholar
  15. 15.
    P. Bodart, J. B Nagy, E. 6. Oerouane and Z. Gabelica, Study of mordenite crystallization III: Factors governing mordenite synthesis, in “Structure and reactivity of modified zeolites” (Studies in surface science and catalysis 18), P. A. Jacobs, H. I. Jaeger, P. Jiru, V. B. Kazansky and G. Schulz-Ekloff, ed., Elsevier, Amsterdam (1984)Google Scholar
  16. 16.
    R. H. Grose and E. M. Flanigen, Crystalline silica, U. S. Patent n°4061724 (1977)Google Scholar
  17. 17.
    G. L. Hoolery, L. B. Alemany, R. M. Dessan and A. H. Chester, Spectroscopic evidence for the presence of internal silanols in highly siliceous ZSM5, Zeolites, 6: 14 (1986)CrossRefGoogle Scholar
  18. 18.
    R. H. Busey, E. Schwartz and R. E. Mesmer, Fluorosilicate equilibria in sodium chloride solutions from 0 to 60°C, Inorq. Chem., 19: 758 (1980)CrossRefGoogle Scholar
  19. 19.
    N. A. Hatiriyoff and H. E. Hageman, Nuclear magnetic resonance studies of aluminium(III) fluoride ion complexes in aqueous solutions, Inorq. Chem., 9: 1031 (1970)CrossRefGoogle Scholar
  20. 20.
    D. Hass, S. P. Tetrosyants, Yu. A. Buslaev and I. Hartlab, Characteristics of the formation of aluminum and gallium fluoride complexes in solution, Doklady Akademii Nauk SSSR, 269: 380 (1983)Google Scholar
  21. 21.
    A. M. Bond and G. T. Hefter, Critical survey of stability constants and related thermodynamic data of fluoride complexes in aqueous solution, Pergamon Press, Oxford (1980)Google Scholar
  22. 22.
    J. L. Guth, H. Kessler, J. M. Higel, J. M. Lamblin, J. Patarin, A. Seive, J. H. Chezeau and R. Hey, 1989, Zeolite synthesis in presence of fluoride ions. Comparison with conventional synthesis methods, in “Zeolite synthesis, ACS Symposium Series n° 398”, M. L. Occelli and H. E. Robson, eds., American Chemical Society, Hashington.Google Scholar
  23. 23.
    Z. Gabelica and J. L. Guth, A silicogermanate with Si: Ge ratio ≥ an HFI zeolite of novel composition, Anqew. Chem. Int. Ed. Engl., 28: 81 (1989)CrossRefGoogle Scholar
  24. 24.
    E. W. Valyocsik, Improved method of preparing crystalline zeolite ZSM20, Eur. Pat. Appl. 0012522 (1980)Google Scholar
  25. 25.
    G. T. Kokotailo and J. Ciric, Synthesis and structural features of zeolite ZSH3, in “Molecular Sieve Zeolites. II. Advances in chemistry series n°102”, E. M. Flanigen and L. B. Sand, ed., American Chemical Society, Hashington (1971)Google Scholar
  26. 26.
    Z. Gabelica, N. Dewaele, L. Maistriau, J. B Nagy and E. C. Derouane, 1989, Directing parameters in the synthesis of zeolites ZSM-20 and Beta, in “Zeolite synthesis, ACS Symposium Series n° 398”, M. L. Occelli and H. E. Robson, eds., American Chemical Society, Hashington.Google Scholar
  27. 27.
    H. D. Durst, M. Milano, E. J. Kikta, Jr, S. A. Connelly and Eli Grushka, Phenacylesters of fatty acids via crown-ether catalysts for enhanced ultraviolet detection in liquid chromatography, Anal. Chem. 47: 1797 (1975)CrossRefGoogle Scholar
  28. 28.
    C. J. Pedersen, Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc., 89: 7017 (1967)CrossRefGoogle Scholar
  29. 29.
    A. Delville, H. D. H. Stover and C. Detellier, Crown ether-cation decomplexation mechanics. 23Na NMR studies of sodium cation complexes with dibenzo-24-crown-8 and Dibenzo-18-Crown-6 in nitromethane and aceto-nitrile, J. Am. Chem. Soc. 109: 7293 (1987)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. L. Guth
    • 1
  • P. Caullet
    • 1
  • A. Seive
    • 1
  • J. Patarin
    • 1
  • F. Delprato
    • 1
  1. 1.Laboratoire de Matériaux MinérauxENSCMu URA-CNRS-428Mulhouse CedexFrance

Personalised recommendations