Factors Influencing the Selectivity of Hydrocracking in Zeolites

  • Jens Weitkamp
  • Stefan Ernst
Part of the NATO ASI Series book series (NSSB, volume 221)

Abstract

Hydrocracking is an industrial refinery process which is widely used to convert vacuum gas oil (VGO) to gasoline 1–3. In addition, there are process variants which convert a variety of other feedstocks, including residues or waxy distillates, to produce valuable hydrocarbon fuels, such as middle distillates or teamcracker feedstocks 4–6. To a large extent, this process versatility has its origin in the availability of a broad spectrum of hydrocracking catalysts, tailored for specific purposes. Usually, these catalysts consist of an acidic carrier loaded with a hydrogenation/dehydrogenation component, in other words they are bifunctional. Typical acidic components are zeolites, amorphous silica- alumina and alumina. Typical hydrogenation components include palladium and platinum, or non-noble metals such as cobalt, nickel, molybdenum and tungsten 2. The latter metals are usually in a sulfided form.

Keywords

Hydrocarbon Molybdenum Palladium Gasoline Cane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Bolton, Hydrocracking, Isomerization and Other Industrial Processes, in: “Zeolite Chemistry and Catalysis”, J. A. Rabo, ed., p. 714/779, ACS Monograph 171, American Chemical Society, Washington, D. C. (1976).Google Scholar
  2. 2.
    J. W. Ward, Design and Preparation of Hydrocracking Catalysts, in: “Preparation of Catalysts III”, G. Poncelet, P. Grange and P. A. Jacobs, eds., p. 587/616, Studies in Surface Science and Catalysis, Vol. 16, Elsevier Science Publishers, Amsterdam, Oxford, New York (1983).Google Scholar
  3. 3.
    I. E. Maxwell, Zeolite Catalysis in Hydroprocessing Technology, Catalysis Today 1: 385 (1987).CrossRefGoogle Scholar
  4. 4.
    K. Hedden and J. Weitkamp, Das Hydrocracken schwerer Erdölfraktionen, Chem.-Ing.-Tech. 47: 505 (1975).CrossRefGoogle Scholar
  5. 5.
    J. G. Sikonia, W. L. Jacobs and S. A. Gembicki, Hydrocrack for More Distillates, Hydrocarbon Process. 57 (No. 5): 117 (1978).Google Scholar
  6. 6.
    S. D. Light, R. V. Bertram and J. W. Ward, Hydrocrack Heavier Feeds, Hydrocarbon Process. 60 (No. 5): 93 (1981).Google Scholar
  7. 7.
    J. Weitkamp, The Influence of Chain Length in Hydrocracking and Hydroisomerization of n-Alkanes, in: “Hydrocracking and Hydrotreating”, J. W. Ward and S. A. Qader, eds., p. 1/27, ACS Symposium Series, Vol. 20, American Chemical Society, Washington, D. C. (1975).Google Scholar
  8. 8.
    J. Weitkamp, Hydrocracken, Cracken und Isomerisieren von Kohlenwasserstoffen, Erdöl, Kohle-Erdgas-Petrochem. 31: 13 (1978).Google Scholar
  9. 9.
    J. Weitkamp and P. A. Jacobs, Isomerization and Hydrocracking of Long Chain Alkanes: New Insight into Carbenium Ion Chemistry, Preprints, Div. Petr. Chem., Am. Chem. Soc. 26: 9 (1981).Google Scholar
  10. 10.
    M. Steijns, G. Froment, P. A. Jacobs, J. Uytterhoeven and J. Weitkamp, Hydroisomerization and Hydrocracking. 2. Product Distributions from n-Decane and n-Dodecane, Ind. Eng. Chem., Prod. Res. Dev. 20: 654 (1981).CrossRefGoogle Scholar
  11. 11.
    H. Pichler, H. Schulz, H. O. Reitemeyer and J. Weitkamp, Über das Hydrocracken gesättigter Kohlenwasserstoffe, Erdöl, Kohle-Erdgas-Petrochem. 25: 494 (1972).Google Scholar
  12. 12.
    G. A. Mills, H. Heinemann, T. H. Milliken and A. G. Oblad, Catalytic Mechanisms, Ind. Eng. Chem. 45: 134 (1953).CrossRefGoogle Scholar
  13. 13.
    P. B. Weisz, Polyfunctional Heterogeneous Catalysis, Adv. Catal. 13: 137 (1962).CrossRefGoogle Scholar
  14. 14.
    J. Weitkamp, S. Ernst and H. G. Karge, Peculiarities in the Conversion of Naphthenes on Bifunctional Catalysts, Erdöl, Kohle-Erdgas-Petrochem. 37: 457 (1984).Google Scholar
  15. 15.
    B. S. Greensfelder, H. H. Voge and G. M. Good, Catalytic and Thermal Cracking of Pure Hydrocarbons: Mechanisms of Reactions, Ind. Eng. Chem. 41: 2573 (1949).CrossRefGoogle Scholar
  16. 16.
    J. A. Martens, P. A. Jacobs and J. Weitkamp, Attempts to Rationalize the Distribution of Hydrocracked Products. I Qualitative Description of the Primary Hydrocracking Modes of Long Chain Paraffins in Open Zeolites, Appi. Catal. 20: 239 (1986).CrossRefGoogle Scholar
  17. 17.
    J. Weitkamp, W. Gerhardt and P. A. Jacobs, Isomerization and Hydrocracking of Alkanes on Pt/CeY, Pt/LaY and Pd/LaY Zeolites-Bifunctional or Metallic Catalysis?, in: “Proc. Intern. Symp. on Zeolite Catalysis”, Siòfok, Hungary, May 13–16, 1985, p. 261.Google Scholar
  18. 18.
    J. A. Martens, P. A. Jacobs and J. Weitkamp, Attempts to Rationalize the Distribution of Hydrocracked Products. II. Relative Rates of Primary Hydrocracking Modes of Long Chain Paraffins in Open Zeolites, Appl. Catal. 20: 283 (1986).CrossRefGoogle Scholar
  19. 19.
    P. A. Jacobs, J. A. Martens, J. Weitkamp and H. K. Beyer, Shape Selectivity Changes in High Silica Zeolites, Farad. Discuss. Chem. Soc. 72: 353 (1982).CrossRefGoogle Scholar
  20. 20.
    H. L. Coonradt and W. E. Garwood, Mechanisms of Hydrocracking: Reactions of Paraffins and Olefins, Ind. Eng. Chem., Proc. Pes. Dev. 3: 38 (1964).CrossRefGoogle Scholar
  21. 21.
    J. Weitkamp, Isomerization of Long Chain n-Alkanes on a Pt/CaY-Zeolite Catalyst, Ind. Eng. Chem., Prod. Res. Dev. 21: 550 (1982).CrossRefGoogle Scholar
  22. 22.
    J. Weitkamp, P. A. Jacobs and J. A. Martens, Isomerization and Hydrocracking of C9 Through C16 n-Alkanes on Pt/HZSM-5 Zeolite, Appl. Catal. 8: 123 (1983).CrossRefGoogle Scholar
  23. 23.
    C. J. Egan, G. E. Langlois and R. J. White, Selective Hydrocracking of Cg-to Cx2-Alkylcyclohexanes on Acidic Catalysts. Evidence for the Paring Reaction, J. Am. Chem. Soc. 84: 1204 (1962).CrossRefGoogle Scholar
  24. 24.
    D. M. Brouwer and H. Hogeveen, The Importance of Orbital Orientation as a Rate-Controlling Factor in Intramolecular Reactions of Carbonium Ions, Ree. Trav. Chim. 89: 211 (1970).CrossRefGoogle Scholar
  25. 25.
    S. Ernst and J. Weitkamp, Hydrocracking of Cg Through C1 Naphthenes on Pd/LaY and Pd/HZSM-5 Zeolites, in: “Proc. Intern. Symp. on Zeolite Catalysis”, Siofok, Hungary, May 13–16, 1985, p. 457.Google Scholar
  26. 26.
    J. Weitkamp, S. Ernst and R. Kumar, “The Spaciousness Index: A Novel Test Reaction for Characterizing the Effective Pore Width of Bi-functional Zeolite Catalysts”, Appl. Catal. 27: 207 (1986).CrossRefGoogle Scholar
  27. 27.
    J. Weitkamp and S. Ernst, Shape Selective Hydroconversion of Hydrocarbons: A Powerful Tool for Characterizing the Effective Pore Width of Zeolites and Related Materials, in: “Catalysis 1987”, J. W. Ward, ed., p. 367/382, Studies in Surface Science and Catalysis, Vol. 38, Elsevier, Amsterdam, Oxford, New York (1988).Google Scholar
  28. 28.
    H. Schulz and J. Weitkamp, Zeolite Catalysts: Hydrocracking and Hydroisomerization of n-Dodecane, Ind. Eng. Chem., Prod. Res. Dev. 11: 46 (1972).CrossRefGoogle Scholar
  29. 29.
    J.-K. Chen, A. M. Martin and V. T. John, Modifications of n-Hexane Hydroisomerization over Pt/Mordenite as Induced by Aromatic Cofeeds, J. Catal. III: 425 (1988).CrossRefGoogle Scholar
  30. 31.
    H. Dauns and J. Weitkamp, Modelluntersuchungen zum Isomerisieren und Hydrocracken von Alkan-Gemischen an einem Pd/LaY-Zeolith-Kata-lysator, Chem.-Ing.-Tech. 58: 900 (1986).CrossRefGoogle Scholar
  31. 32.
    H. Dauns, S. Ernst and J. Weitkamp, The Influence of Hydrogen Sulfide in Hydrocracking of n-Dodecane over Palladium/Faujasite Catalysts, in: “New Developments in Zeolite Science and Technology”, Y. Murakami, A. Iijima and J. W. Ward, eds., p. 787/794, Kodansha, Tokyo and Elsevier, Amsterdam (1986).Google Scholar
  32. 33.
    J. Weitkamp and H. Dauns, Hydrieraktivität und Acidität bifunktioneller Katalysatoren: Insitu-Charakterisierung mittels Umsetzung von Ethylbenzol, Erdöl, Kohle-Erdgas-Petrochem. 40: 111 (1987).Google Scholar
  33. 34.
    H. G. Karge and J. Rasko, Hydrogen Sulfide Adsorption on Faujasite-Type Zeolites with Systematically Varied Si-Al Ratios, J. Colloid Interface Sci. 64: 552 (1978).CrossRefGoogle Scholar
  34. 35.
    T. Y. Yan, The Promotonial Effect of Water in Hydrocracking, J. Catal. 25: 204 (1972).CrossRefGoogle Scholar
  35. 36.
    O. Weisser and S. Landa, “Sulphide Catalysts, Their Properties and Applications”, p. 18/22, Pergamon Press, Oxford, New York and Vieweg-Verlag, Braunschweig (1973).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Jens Weitkamp
    • 1
  • Stefan Ernst
    • 2
  1. 1.Institute of Chemical Technology IUniversity of StuttgartPfaffenwaldring 55Stuttgart 80Germany
  2. 2.Department of Chemistry, Chemical TechnologyUniversity of OldenburgOldenburgGermany

Personalised recommendations