Zeolite Synthesis and Crystal Tailoring

  • François Fajula
Part of the NATO ASI Series book series (NSSB, volume 221)


In the past thirty years zeolites have stimulated a huge amount of academic and industrial research and impacted several adsorption and catalytic processes. The commercial success of zeolites was due primarily to their unique structure and composition controlled properties which permitted the improvement of known processes and the development of new ones. On the other hand, the microporous zeolite frameworks have provided the degree of perfection needed for the study of fundamental events in sorption, catalysis, spectroscopy and surface science in general.


Nucleation Rate Aluminium Atom Zeolite Crystal Composition Gradient Crystal Habit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. M. Meier and D. H. Olson, “Atlas of Zeolite Structure Types”, Butterworth, London (1987).Google Scholar
  2. 2.
    D. W. Breck, “Zeolite Molecular Sieves”, Wiley Interscience, New York, (1974).Google Scholar
  3. 3.
    R. M. Barrer, “Hydrothermal Chemistry of Zeolites”, Academic Press, London (1976).Google Scholar
  4. 4.
    P. A. Jacobs and J. A. Martens, “Synthesis of High-Silica Aluminosilicate Zeolites” Elsevier, Amsterdam (1987).Google Scholar
  5. 5.
    S. M. Csicsery, in: ACS Monograph N° 171, “Zeolite Chemistry and Catalysis”, J. A. Rabo, ed., p. 680, Washington (1976).Google Scholar
  6. 6.
    Z. Gabelica, N. Blom and E. G. Derouane, Appl. Catal. 5: 227 (1983).CrossRefGoogle Scholar
  7. 7.
    D. T. Hayhurst, A. Nastro, R. Aiello, F. Crea and G. Giordano, Zeolites 8: 416 (1988).Google Scholar
  8. 8.
    R. Mostowicz and L. B. Sand, Zeolites 3: 219 (1983).CrossRefGoogle Scholar
  9. 9.
    J. Kornatowski, Zeolites 8: 77 (1988).CrossRefGoogle Scholar
  10. 10.
    J. L. Guth, H. Kessler and R. Wey, In: “New Developments in Zeolite Science and Technology”, Proceedings 7th Intern. Zeolite Conf., Murakami, A. Iijima and J. W. Ward, eds., p. 121, Kodansha, Elsevier, Tokyo, Amsterdam, (1986).CrossRefGoogle Scholar
  11. 11.
    H. Kacirek and H. Lechert, J. Phys. Chem. 79:1589(1975); 80: 1291 (1976).Google Scholar
  12. 12.
    S. P. Zdhanov and N. N. Samulevich, in: “Proceedings 5th International Conference on Zeolites”, L. C. V. Rees, ed., p. 75, Heyden, London (1980).Google Scholar
  13. 13.
    S. Nicolas, PhD Thesis Montpellier, France (1988).Google Scholar
  14. 14.
    F. Fajula, S. Nicolas, F. Di Renzo, C. Gueguen and F. Figueras, in: ACS Symp. Ser. N°398, “Zeolite Synthesis” M. L. Occelli and H. E. Robson, ed., ch. 34, Washington (1989).Google Scholar
  15. 15.
    S. Nicolas, P. Massiani, M. Vera Pacheco, F. Fajula and F. Figueras. Stud. Surf. Sci. Catal. 37: 115 (1988).CrossRefGoogle Scholar
  16. 16.
    R. F. Strickland-Constable In: “Kinetics and Mechanisms of crystallization”, p. 7, Academic Press, London (1968).Google Scholar
  17. 17.
    R. von Ballmoos and W. M. Meier, Nature 289: 782 (1981).Google Scholar
  18. 18.
    E. F. Freund; J. Crystal Growth 34: 11 (1976).CrossRefGoogle Scholar
  19. 19.
    L. D. Rollmann, US. Patent, 4 203 869 (1980).Google Scholar
  20. 20.
    P. Massiani, F. Fajula and F. Di Renzo, J. Chem. Soc., Chem. Commun. 814 (1988).Google Scholar
  21. 21.
    P. Massiani, F. Fajula, F. Figueras and J. Sanz, Zeolites 8: 332 (1988).Google Scholar
  22. 22.
    D. Barthomeuf, Mater. Chem. Phys. 17: 49 (1987).CrossRefGoogle Scholar
  23. 23.
    J. Dwyer, Stud. Surf. Sci. Catal. 37: 333 (1987).CrossRefGoogle Scholar
  24. 24.
    A. Goursot, F. Fajula, C. Daul and J. Weber, J. Phys. Chem. 92: 4456 (1988).CrossRefGoogle Scholar
  25. 25.
    W. O. Haag, R. H. Lago and P. B. Weisz, J. Chem. Soc., Faraday Discuss. 72: 317 (1981).Google Scholar
  26. 26.
    W. Holderich and L. Rickert, Chem. Ing. Tech. 58: 412 (1986).CrossRefGoogle Scholar
  27. 27.
    H. J. Doelle, J. Heering, L. Rickert and L. Marosi, J. Catal. 71: 27 (1981).CrossRefGoogle Scholar
  28. 28.
    P. Ratnasamy, G. P. Babu, A. J. Chandwadkar and S. B. Kulkarni, Zeolites 6: 98 (1986).CrossRefGoogle Scholar
  29. 29.
    C. Herrmann, J. Haas and F. Fetting, Appl. Catal. 35: 299 (1987).CrossRefGoogle Scholar
  30. 30.
    H. G. Karge, Y. Wada, J. Weitkamp, S. Ernst, U. Girrbach and H. K. Beyer, Stud. Surf. Sci. Catal. 19: 101 (1984).CrossRefGoogle Scholar
  31. 31.
    W. W. Kaeding, J. Catal. 95: 512 (1985).Google Scholar
  32. 32.
    P. Chutoransky, Jr. and F. G. Dwyer, Adv. Chem. Ser. 121: 540 (1973).CrossRefGoogle Scholar
  33. 33.
    J. Wei, J. Catal. 1: 526 (1962).CrossRefGoogle Scholar
  34. 34.
    E. G. Derouane in: “Zeolites Science and Technology” NATO ASI Series, N°80, F. R. Ribeiro, A. E. Rodrigues, L. D. Rollmann and C. Naccache, p. 347, Martinus Nijhoff, The Hague (1984).Google Scholar
  35. 35.
    A. Tissler, P. Polanek, U. Girrbach, U. Müller and K. K. Unger, Stud. Surf. Sci. Catal. 46: 399 (1989).Google Scholar
  36. 36.
    C. V. Mc. DanTeT and P. K. Maher, in: ACS Monograph N°171, “Zeolite Chemistry and Catalysis”, J. A. Rabo, ed., p. 285, Washington (1976).Google Scholar
  37. 37.
    F. Fajula, L. Moudafi, R. Dutartre and F. Figueras, Nouv. J. Chim. 8: 207 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • François Fajula
    • 1
  1. 1.URA 418 CNRSENSCMMontpellier CedexFrance

Personalised recommendations