Long Range Versus Short Range Interactions in Zeolites

  • Wilfried J. Mortier
  • R. Vetrivel
Part of the NATO ASI Series book series (NSSB, volume 221)


Models based on short range and long range (mainly electrostatic) interaction effects in describing the properties of zeolites are critically examined. Starting point is the Hamiltonian operator. Depending on the property under investigation, the (long range) external potential terms will have to be included in the model. Geometries can be predicted adequately by accounting for short range (repulsive and attractive) interactions only. Energy calculations and molecular interactions are much more sensitive to including the external potential in the calculations because of the predominant influence of the Madelung potential on the charge distribution for inorganic systems. For interactions of molecules with the surface, the absolute magnitude is of no importance, but the potential gradient will determine the properties. The cation distribution is adequately described using short-range interactions only, and is seemingly independent of the A1 distribution pattern in the framework. The same could apply to the protons, in which case we might have to revise the current concepts concerning Broensted acidity in zeolites.


Long Range Point Charge Range Interaction Hamiltonian Operator Cation Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hohenberg, P. and Kohn, W. Phys. Rev. Sec. B 136: 864 (1964).CrossRefGoogle Scholar
  2. 2.
    Parr, R. G. in Electron Distributions and The Chemical Bond, Coppens, P. and Hall, M. B. Eds., New York: Plenum Publ. Corp., (1982) p. 95.CrossRefGoogle Scholar
  3. 3.
    Parr, R. G. Ann. Rev. Phys. Chem. 34: 631 (1983).CrossRefGoogle Scholar
  4. 4.
    Catlow, C. R. A. and Cormack, A. N. Int. Reviews Phys. Chem. 6: 227 (1987).CrossRefGoogle Scholar
  5. 5.
    Mortier, W. J., Ghosh, S. K. and Shankar, S. J. Am. Chem. Soc. 108: 4315 (1986).CrossRefGoogle Scholar
  6. 6.
    Van Genechten, K., Mortier, W. J. and Geerlings, P. J. Chem. Phys. 86: 5063 (1987).Google Scholar
  7. 7.
    Ewald, P. P. Ann. Phys. 64: 253 (1923).Google Scholar
  8. 8.
    Bertaut, F. J. Phys. Radium 13: 499 (1952).CrossRefGoogle Scholar
  9. 9.
    Van Genechten, K. Ph. D. Thesis #160, K. U. Leuven, Fac. Agronomy, (1987).Google Scholar
  10. 10.
    Van Genechten, K. A., and Mortier, W. J. Zeolites 8: 273 (1988).CrossRefGoogle Scholar
  11. 11.
    Uytterhoeven, L. Ph. D. Thesis #000, K. U. Leuven, Fac. Agronomy, in preparation.Google Scholar
  12. 12.
    Kollmann, P. A., and Allen, L. C. J. Chem. Phys. 51: 3286 (1969).CrossRefGoogle Scholar
  13. 13.
    van Santen, R. A., van Beest, B. W. H. and de Man, A. J. M. this conference.Google Scholar
  14. 14.
    Mortier, W. J. Structure and Bonding 66: 125 (1987).CrossRefGoogle Scholar
  15. 15.
    Mirodatos, C. and Barthomeuf, D. J. Catal. 114: 212 (1988).CrossRefGoogle Scholar
  16. 16.
    Jackson, R. A. and Catlow, C. R. A. Mol. Simulation 1: 207 (1988).CrossRefGoogle Scholar
  17. 17.
    Vetrivel, R., Catlow, C. R. A., and Colbourn, E. A. Proc. R. Soc. Lond. A 417: 81 (1988).CrossRefGoogle Scholar
  18. 18.
    Seiti, K. Doct. Thesis, Univ. PARIS VI, Chimie, Paris (1988).Google Scholar
  19. 19.
    Guest. M. F. and Kendrick, J. GAMESS user manual, University of Manchester Computer Centre, Manchester (1986).Google Scholar
  20. 20.
    Vinek, H., Noller, H., Ebel, M. and Schwartz, K. J. Chem. Soc. Faraday Transactions I 73: 734 (1977).CrossRefGoogle Scholar
  21. 21.
    Gutmann, V. The Donor-Acceptor Approach to Molecular Interactions New York: Plenum Press (1978).CrossRefGoogle Scholar
  22. 22.
    Linert, W., Gutmann, V., and Perkins, P. G. Inorg. Chim. Acta 69: 61 (1983).CrossRefGoogle Scholar
  23. 23.
    Wang, Y., Nordlander, P. and Tolk, N. H. J. Chem. Phys. 89: 4163 (1988).CrossRefGoogle Scholar
  24. 24.
    Uytterhoeven, L. Proceedings of the 8th Int. Zeolite Conference, Amsterdam (1989), in press.Google Scholar
  25. 25.
    Mulliken, R. S. J. Chem. Phys. 23: 1833 (1955).CrossRefGoogle Scholar
  26. 26.
    Van Dun, J. J. and Mortier, W. J. J. Phys. Chem. 92: 6740 (1988).CrossRefGoogle Scholar
  27. 27.
    Van Dun, J. J., Dhaeze, K. and Mortier, W. J. J. Phys. Chem. 92: 6747 (1988).CrossRefGoogle Scholar
  28. 28.
    Van Dun, J. J., Dhaeze, K., Mortier, W. J. and Vaughan, D. E. W. J. Phys. Chem. Solids 50: 469 (1989).CrossRefGoogle Scholar
  29. 29.
    De Tavernier, personal communication.Google Scholar
  30. 30.
    Derouane, E. G., Fripiat, J. G. and André, J. -M. personal communication.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Wilfried J. Mortier
    • 1
  • R. Vetrivel
    • 1
  1. 1.Basic Chemicals TechnologyEXXON Chemical HollandRotterdamThe Netherlands

Personalised recommendations