Confinement Effects in Sorption and Catalysis by Zeolites

  • Eric G. Derouane
Part of the NATO ASI Series book series (NSSB, volume 221)


Molecular sieves, including zeolites, are distinct from other sorbents and catalysts by the curvature at the atomic scale of the internal surface which they offer to the molecules they host. Surface curvature leads to confinement effects when the size of the host structure (the pores of the framework) and that of the guest molecule (reactant, reaction intermediate, product) become comparable. Following a quantitative description of confinement and its consequences, topics and examples selected from the literature on physisorption and catalysis are discussed. It is shown that intimate relationships may exist between die host molecular sieve framework and the conformation of the guest molecules in the intracrystalline free volume. It is proposed that zeolite should be considered as solid enzymes, i.e., systems in which non-bonding or supermolecular interactions with guest molecules play a major role in sorption and catalytic activation.


Molecular Sieve Guest Molecule Pore Wall Acid Strength Zeolite Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. B. Weisz, Ind. Eng. Chem. Fundam., 25: 53 (1986).CrossRefGoogle Scholar
  2. 2.
    E. G. Derouane, Mémoire Acad. Roy. Belg., Sciences, 2e Ser., T. LXV, Fase. 5 (1988).Google Scholar
  3. 3.
    E. G. Derouane, J. M. André, and A. A. Lucas, J. Catal., 110: 58 (1988).CrossRefGoogle Scholar
  4. 4.
    E. G. Derouane, J. Catal., 100: 541 (1986).CrossRefGoogle Scholar
  5. 5.
    E. G. Derouane, J. M. André, and A. A. Lucas, Chem. Phys. Lett., 137: 336 (1987).CrossRefGoogle Scholar
  6. 6.
    D. J. Cram, Science (Washington, D. C.), 240: 760 (1988).Google Scholar
  7. 7.
    E. G. Derouane and D. Vanderveken, Appi. Catal., 45: L15 (1988).CrossRefGoogle Scholar
  8. 8.
    P. B. Weisz, Pure Appi. Chem., 52: 2091 (1980).CrossRefGoogle Scholar
  9. 9.
    E. G. Derouane, in “Intercalation Chemistry”. M. S. Whittingham and A. J. Jacobson, eds., Academic Press, New York, 1982; p. 101.Google Scholar
  10. 10.
    S. M. Csicsery, Zeolites. 4: 202 (1984).CrossRefGoogle Scholar
  11. 11.
    E. G. Derouane, Stud. Surf. Sci. Catal., 19: 1 (1984).CrossRefGoogle Scholar
  12. 12.
    E. G. Derouane, Oral presentation at the Advances in Catalytic Technologies Seminar, Catalytica Inc., Santa Clara, CA., U. S. A., 18–20 October 1988.Google Scholar
  13. 13.
    E. G. Derouane and M. E. Davis, J. Mol. Cat., 48: 37 (1988).CrossRefGoogle Scholar
  14. 14.
    E. G. Derouane and J. G. Fripiat, Zeolites. 5: 165 (1985).CrossRefGoogle Scholar
  15. 15.
    L. Onsager, J. Am. Chem. Soc., 58: 1486 (1936).CrossRefGoogle Scholar
  16. 16.
    E. G. Derouane, Chem. Phys. Lett., 142: 200 (1987).CrossRefGoogle Scholar
  17. 17.
    E. G. Derouane, J. B. Nagy, C. Fernandez, Z. Gabelica, E. Laurent, and P. Maljean, Appl. Catal., 40: L1 (1988).CrossRefGoogle Scholar
  18. 18.
    I. Derijcke, E. G. Derouane, and A. A. Lucas, to be published.Google Scholar
  19. 19.
    J. G. Fripiat and E. G. Derouane, to be published.Google Scholar
  20. 20.
    E. G. Derouane, J. B. Nagy, B. De Roover, and C. Fernandez, in Proc. 8th Intern. Zeolite Conf., Amsterdam, The Netherlands, 10–14 July 1989.Google Scholar
  21. 21.
    H. Stach, U. Lohse, H. Thamm, and W. Schirmer, Zeolites. 6: 74 (1986).CrossRefGoogle Scholar
  22. 22.
    L. V. C. Rees, Chem. Ind., 7: 252 (1984).Google Scholar
  23. 23.
    I. Gameson, P. A. Wright, T. Rayment, and J. M. Thomas, Chem. Phys. Lett., 123: 145 (1986).CrossRefGoogle Scholar
  24. 24.
    E. G. Derouane and J. B. Nagy, Chem. Phys. Lett., 137: 341 (1987).CrossRefGoogle Scholar
  25. 25.
    J. Fraissard, T. Ito, M. Springuel-Huet, and J. Demarquay, in “New Developments in Zeolite Science and Technology”. Y. Murakami, A. Iijima, and J. Ward, ed.; Kodansha-Elsevier, Tokyo, Amsterdam, 1986; p. 393, and references therein.Google Scholar
  26. 26.
    S. Hayashi, K. Suzuki, S. Shin, K. Hayamizui, and O. Yamamoto, Chem. Phys. Lett., 113: 368 (1985).CrossRefGoogle Scholar
  27. 27.
    R. M. Barrer and J. A. Davies, Proc. Rov. Soc. London Ser. A. 322: 1 (1971).CrossRefGoogle Scholar
  28. 28.
    R. M. Barrer, Symposium on the Characterization of Porous Solids, Neuchatel, 9–13 July 1978.Google Scholar
  29. 29.
    R. M. Barrer, in “Zeolites: Science and Technology”. F. Ramoa Ribeiro, D. Rollmann, and C. Naccache, ed., NATO ASI Series E, No. 80, Martinus Nijhoff, The Hague, 1984; p. 227.Google Scholar
  30. 30.
    R. M. Barrer, in “Zeolites: Science and Technology”. F. Ramoa Ribeiro, D. Rollmann, and C. Naccache, ed., NATO ASI Series E, No. 80, Martinus Nijhoff, The Hague, 1984; p. 261.Google Scholar
  31. 31.
    F. Vigné-Maeder, J. Catal., in press.Google Scholar
  32. 32.
    K. Tanabe, in “Catalysis Science and Technology”. Anderson, J. R. and M. Boudart, ed., Springer-Verlag, Berlin, 1981; 2: 242.Google Scholar
  33. 33.
    M. W. Anderson and J. Klinowski, Zeolites. 6: 150 (1986).CrossRefGoogle Scholar
  34. 34.
    D. Barthomeuf, J. Phys. Chem., 83: 249 (1979).CrossRefGoogle Scholar
  35. 35.
    W. J. Mortier, J. Catal., 55: 138 (1978).CrossRefGoogle Scholar
  36. 36.
    P. A. Jacobs, Catal. Rev. Sci. Eng., 24: 415 (1982).CrossRefGoogle Scholar
  37. 37.
    D. Barthomeuf, Mater. Chem. Phys., 17: 49 (1987).CrossRefGoogle Scholar
  38. 38.
    E. G. Derouane and J. G. Fripiat, Zeolites. 5: 165 (1985).CrossRefGoogle Scholar
  39. 39.
    J. R. Sohn, S. J. DeCanio, P. O. Fritz, and J. H. Lunsford, J. Phys. Chem., 90: 4847 (1986).CrossRefGoogle Scholar
  40. 40.
    D. Freude, M. Hunger, and H. Pfeifer, Chem. Phys. Lett., 128: 62 (1986).CrossRefGoogle Scholar
  41. 41.
    S. Fukase and B. W. Wojciechowski, J. Catal. 102: 452 (1986).CrossRefGoogle Scholar
  42. 42.
    J. B. Nagy, M. Guelton, and E. G. Derouane, J. Catal., 55: 43 (1978).CrossRefGoogle Scholar
  43. 43.
    M. F. M. Post, J. van Amstel, and H. W. Kouwenhoven, in “Proc. 6th Intern. Zeolite Conf.”. D. H. Olson and A. Bisio, ed., Butterworths, Guildford, 1984; p. 517.Google Scholar
  44. 44.
    E. Kikuchi, H. Nakano, K. Shimomura, and Y. Morita, Sekiyu Gakkaishi. 28: 210 (1985).CrossRefGoogle Scholar
  45. 45.
    W. O. Haag and R. M. Dessau, in “Proc. 8th Intern. Congr. Catalysis”. Verlag-Chemie, Weinheim, 1985; p. IV–545.Google Scholar
  46. 46.
    C. Mirodatos and D. Barthomeuf, J. Catal., 93: 246 (1985).CrossRefGoogle Scholar
  47. 47.
    P. W. Tamm, D. H. Mohr, and C. R. Wilson, in “Catalysis 1987”. J. W. Ward, ed., Elsevier, Amsterdam, 1987; p. 335.Google Scholar
  48. 48.
    L. Pauling, Am. Sci., 36: 51 (1948).Google Scholar
  49. 49.
    L. Nogueira and H. Pines, J. Catal., 70: 404 (1981).CrossRefGoogle Scholar
  50. 50.
    Z. Paal, Advan. Catal., 29: 273 (1980).CrossRefGoogle Scholar
  51. 51.
    F. G. Gault, Advan. Catal., 30: 1 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Eric G. Derouane
    • 1
  1. 1.Laboratoire de CatalyseFacultés Universitaires N.-D. de la PaixNamur.Belgium

Personalised recommendations