Advertisement

Temperature Dependence of the Mobility of Molecules Sorbed in Type A Zeolites

  • E. Cohen De Lara
  • R. Kahn
Part of the NATO ASI Series book series (NSSB, volume 221)

Abstract

“When a certain number of molecules strike continually upon a surface and stay there for a certain length of time before re-evaporating, we shall find a higher concentration of the gas. This is the phenomenon we call adsorption” 1. The “certain length of time” is one of the principal notion emphasized by J.H. de Boer. It governs the adsorption and depends on the strength of the interaction between the molecule and the surface. The Frenkel relation gives the order of magnitude of this “time of adsorption”, τ, according to the value of the heat of adsorption, Q. At room temperature, τ is in the picosecond scale when Q is around 10 kJ/mole, and longer than a week for 100 kJ/mole,1.

Keywords

Band Shape Molecular Quantity Quasielastic Neutron Scattering Diatomic Homonuclear Molecule Orientational Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Boer, J. H., 1968, “The dynamical character of adsorption”, Clarendon Press, Oxford.Google Scholar
  2. 2.
    Egelstaff, P. A., 1967, “An introduction to the liquid state”, 1967, Academic Press, London and New York.Google Scholar
  3. 3.
    Gordon, R. G., “Advance in magnetic resonance” vol. 3, 1968, Academic press, New York.Google Scholar
  4. 4.
    Bratos, S., Rios, J., and Guissani, Y.,1970, J. Chem. Phys., 52:439Google Scholar
  5. 5.
    Vincent-Geisse, J., in “Vibrational spectroscopy of molecular liquids and solids”, 1970, S. Bratos and R.M. Pick, Plenum Publishing CorporationGoogle Scholar
  6. 6.
    Buckingham, A. D., 1960, Trans. of the Faraday Soc. 56:753.Google Scholar
  7. 7.
    Little, L.H., 1966, “Infrared spectra of adsorbed species”, Academic Press., London.Google Scholar
  8. 8.
    Cohen De Lara, E., 1972, Molecular Physics, 23:555.Google Scholar
  9. 9.
    Cohen De Lara, E., and Delaval, Y., 1978, J. Chem. Soc. Faraday Trans II, 74:790Google Scholar
  10. 10.
    Cohen De Lara, E., Kahn, R., and Seloudoux, R., 1985, J. Chem. Phys 83:2646. Kahn, R., Cohen De Lara, E. and Moeller, K. D., 1985, J. Chem. Phys., 83:2653.Google Scholar
  11. 11.
    Marshall, W., and Lovesey, S., “Theory of thermal neutron scattering”, 1971, Clarendon Press, Oxford.Google Scholar
  12. 12.
    Delaval, Y., and Cohen De Lara, E., 1981, J. Chem. Soc. Faraday Trans I, 77:869.Google Scholar
  13. 13.
    Barrachin, B., and Cohen De Lara, E., 1986, J. Chem. Soc. Faraday Trans II, 83:1953.Google Scholar
  14. 14.
    Soussen-Jacob, J., Cohen De Lara, E., and Tsakiris, J., 1989, J. Chem. Phys.Google Scholar
  15. 15.
    Yamagida, R.Y., Amaro, A. A. and Seff, K., 1973; J. Phys. Chem. 77:805.Google Scholar
  16. 16.
    Kahn, R., Cohen De Lara, E., Thorel, P., and Ginoux, J. L., 1982 Zeolites, 2:260.Google Scholar
  17. 17.
    Cohen De Lara, E., Kahn, R., and Mezei, F., J. Chem. Soc. Faraday Trans I, 79:1911.Google Scholar
  18. 18.
    Alloneau, J. M. and Volino, F., 1986, Zeolites, 6:431.Google Scholar
  19. 19.
    Cohen De Lara, E., and Kahn, R., 1981, J. Physique (Paris) 42:1029Google Scholar
  20. 20.
    Kahn, R., Cohen De Lara, E., and Viennet, E., 1989, J. Chem. Phys.Google Scholar
  21. 21.
    Egelstaff, P. A., “An introduction to the liquid state”, 1967, Academic Press.Google Scholar
  22. 22.
    Cohen De Lara, E., Kahn, R., and Goulay, A. M., 1989 J. Chem. Phys.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • E. Cohen De Lara
    • 1
  • R. Kahn
    • 2
  1. 1.Laboratoire de Recherches Physiques associé au CNRSUniversité Pierre et Marie CurieParis Cedex 05France
  2. 2.Laboratoire Léon BrillouinCEN, SaclayGif-sur-YvetteFrance

Personalised recommendations