Physiological Implications of Wheat and Oat Dietary Fiber

  • K. E. Bach Knudsen
  • Inge Hansen
  • B. Borg Jensen
  • Karin Østergård
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 270)


The physiological implications of various types of dietary fiber (DF) are highly correlated to the chemical and structural composition of cell wall materials (CWM) (e.g. Anderson and Chen, 1979; Eastwood and Kay, 1979; Cummings and Branch 1982; Selvendran, 1984; Wisker et al. 1985). These factors in turn determine the physical and physicochemical properties of DF of which the water holding capacity, viscosity and cationic exchange capacity have attracted most interest (Van Soest and Robertson, 1976; Eastwood and Kay, 1979). Wheat bran has a high proportion of insoluble lignified CWM (Selvendran, 1984) and behaves more or less like a inert marker in the gastrointestinal (GI) tract. Wheat bran has little or no effect on digestion and absorption of nutrients in the small intestine and is highly resistant to microbial degradation in the large intestine of monogastrics including man (Stephen and Cummings, 1980). Consequently wheat bran, due to its physical presence, is one of the most efficient DF sources in increasing fecal bulk and in decreasing mouth-to-anus transit time (Cummings et al. 1978; Spiller et al. 1986).


Dietary Fiber Large Intestine Wheat fLour Wheat Bran Short Chain Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. W., and Chen, W. J. L., 1979, Plant fiber. Carbohydrate and Lipid metabolism, Am. J. Clin. Nutr., 32:346.Google Scholar
  2. Argenzio, R. A., and Whipp, S. C., 1979, Interrelationship of sodium, chloride, bicarbonate and acetate transport by the colon of the pig, J. Physiol, 295:365.Google Scholar
  3. Aspinall, G. O., and Carpenter, R. C., 1984, Structural investigations on the non-starchy polysaccharides of oat bran, Carbohydrate Polymers, 4:271.CrossRefGoogle Scholar
  4. Bacic, A., and Stone, B. A., 1981a, Isolation and ultrastructure of aleurone cell walls from wheat and barley, Aust. J. Plant Physiol., 8:853.Google Scholar
  5. Bacic, A., and Stone, B. A., 1981b, Chemistry and organization of aleurone cell wall components from wheat and barley, Aust. J. Plant Physiol., 8:475.CrossRefGoogle Scholar
  6. Bach Knudsen, K. E., Åman, P., and Eggum, B. O., 1987, Nutritive value of danish-grown barley varieties, I, Carbohydrates and other major constituents, J. Cereal Sci., 6:173.CrossRefGoogle Scholar
  7. Chen, W. J. L., and Anderson, J. W., 1986, Hypocholesterolemic effects of soluble fibers, in: “DIETARY FIBER Basic and Clinical Aspects,” G. V. Vahouny and D. Kritchevsky, eds., Plenum Press, New York.Google Scholar
  8. Cummings, J. H., and Branch, W. J., 1982, Postulated mechanisms whereby fiber may protect against large bowel cancer, in: “Dietary Fiber in Health and Disease,”, G. V. Vahouny and D. Kritchevsky, eds., Plenum Press, New York.Google Scholar
  9. Cummings, J. H., and Englyst, H. N., 1987, Fermentation in the human large intestine and the available substrates, Am. J. Clin. Nutr., 45:1243.Google Scholar
  10. Cummings, J. H., Southgate, D. A. T., Branch, W. J., Houston, H., Jenkins, D. J. A., and James, W. P. T., 1978, Colonic response to dietary fibre from carrot, cabbage, apple, bran and guar gum, Lancet, 1:5.CrossRefGoogle Scholar
  11. Eastwood, M. A., and Kay, R. M., 1979, An hypothesis for the action of dietary fiber along the gastrointestinal tract, Am. J. Clin. Nutr., 32:364.Google Scholar
  12. Eggum, B. O., Andersen, J. O., and Rothenberg, S., 1982, The effect of dietary fibre Level and microbial activity in the digestive tract on fat metabolism in rats and pigs, Acta. Agric. Scand., 32:145.CrossRefGoogle Scholar
  13. Englyst, H. N., and Cummings, J- H., 1985, Digestion of the polysaccharides of some cereal foods in the human small intestine, Am. J. Clin. Nutr., 42:778.Google Scholar
  14. Englyst, H. N., Wiggins, H. S., and Cummings, J. H., 1982, Determination of non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates, Analyst, 107:307.CrossRefGoogle Scholar
  15. Fulcher, R. G., 1986, Morphological and chemical organization of the oat kernel, in: “OATS Chemistry and Technology,” F. H. Webster ed., American Association of Cereal Chemists, St. Paul, Minnesota.Google Scholar
  16. Graham, H., Hesselman, K. and Åman, P., 1986, The Influence of wheat bran and sugar-beet pulp on the digestibility of dietary components in a cereal-based pig diet, J. Nutr., 116:242.Google Scholar
  17. Gould, M.R., Anderson, J.W., and O’Mahony, S., 1980, Biofunctional properties of oats, in: “Cereals for Food and Beverages,” G. G. Inglett and L. Munck, eds., Academic Press, New York.Google Scholar
  18. Holt, S., Heading, R. C., Carter, D. C., Prescott, L. F., and Tothill, P., 1979, Effect of gel fibre on gastric emptying and absorption of glucose and paracectamol, Lancet, 1:636.CrossRefGoogle Scholar
  19. Jenkins, D. J. A., Wolever, T. M. S., Leeds, A. R., Gassull, M. A., Hais-man, P., Dilawari, J., Goff, D. V., Metz, G. L., and Alberti, K. G. M. M., 1978, Dietary fibres, fibre analogues and glucose tolerance: Importance of viscosity. Br. Med. J., 1:1392.CrossRefGoogle Scholar
  20. Jenkins, D. J. A., Jenkins, A. L., Wolever, T. M. S., Collier, G. R., Rao, A. V., and Thompson, L. U., 1987, Starchy foods and fiber: reduced rate of digestion and improved carbohydrate metabolism, Scand. J. Gastro., 22, Suppl. 129:132.CrossRefGoogle Scholar
  21. Judd, P. A-, and Truswell, S. A., 1981, The effect of rolled oats on blood lipids and fecal steroid excretion in man, Am. J. Clin. Nutr., 34:2061.Google Scholar
  22. Jørgensen, K. G., and Aastrup, S., 1987, Determination of β-glucan in barley, malt, wort and beer, in: “Modern Methods of Plant Analysis, Vol 7,” H. F. Linskens and J. F. Jackson, eds., Springer-Verlag, Berlin.Google Scholar
  23. Kirby, R. W., Anderson, J. W., Sieling, B., Rees, E. D., Chen, W. J. L., Miller, R. E., and Kay, R. M., 1981, Oat-bran intake selectively lowers serum low-density lipoprotein cholesterol concentrations of hypercholesterolemic men. Am. J. Clin. Nutr., 34:824.Google Scholar
  24. Lupton, J. R., Coder, D. M., and Jacobs, L. R., 1988, Long-term effects of fermentable fibres on rat colonic pH and epithelial cell cycle, J. Nutr., 118:840.Google Scholar
  25. Mares, D. J., and Stone, B. A., 1973, Studies on wheat endosperm. I. Chemical composition and ultrastructure of the cell walls, Aust. J. Biol. Sci., 26:793.Google Scholar
  26. Mason, V. C., 1980, Role of the large intestine in the processes of digestion and absorption in the pig, in: “Current Concept of Digestion and Absorption in Pigs,” A. G. Low and I. G. Partridge, eds., Technical Bulletin 3, The National Institute for Research in Dairying, Reading, England, The Hannah Research Institute, SJK, Scotland.Google Scholar
  27. Mason, V. C., and Just, A., 1976, Bacterial activity in the hind-gut of pigs. 1. Its influence on the apparent digestibility of dietary energy and fat. Z. Tierphysiol., Tierernährg. u. Futtermittelkde., 36:301.CrossRefGoogle Scholar
  28. McElroy, W.D., 1947, The energy source for bioluminescence in an isolated system, Proc. Nat. Acad. Sci. USA, 33:342.CrossRefGoogle Scholar
  29. McNiel, N- I., Cummings, J. H., and James, W. P. T., 1978, Short chain fatty acid absorption by the human Large intestine, Gut, 19:819.CrossRefGoogle Scholar
  30. Millard, P., and Chesson, A., 1984, Modification to swede (Brassica napus L.) anterior to the terminal ileum of pigs: some implications for the analysis of dietary fibre, Br. J. Nutr., 52:583.CrossRefGoogle Scholar
  31. Miller, T. L., Wolin, M. J., 1979, Fermentation by saccharolytic intestinal bacteria, Am. J. Clin. Nutr., 32:164.Google Scholar
  32. Nyman, M., and Asp, N.-G., 1982, Fermentation of dietary fibre components in the rat intestinal tract, Br. J. Nutr., 47:357.CrossRefGoogle Scholar
  33. Ring, S. G., and Selvendran, R. R., 1980, Isolation and analysis of cell wall meterial from beeswing wheat bran (Triticum aestivum), Phytochemistry 19:1723.CrossRefGoogle Scholar
  34. Roediger, W. E. W., 1980, Role of anaerobic bacteria in the metabolic welfare of colonic mucosa in man, Gut, 21:793.CrossRefGoogle Scholar
  35. Sakata, T., and Yajima, T., 1984, Influence of short chain fatty acids on the epithelial cell division of the digestive tract, Q. J. Exp. Physiol., 69:639.Google Scholar
  36. Sandberg, A.-S., Anderson, H., Hallgren, B., Hasselblad, K., Isaksson, B., and Hultén, L., 1981, Experimental model for in vivo determination of dietary fibre and its effect on the absorption of nutrients in the small intestine, Br. J. Nutr., 45:283.CrossRefGoogle Scholar
  37. Sandberg, A.-S., Ahderinne, R., Andersson, H., Hallgren, B., and Hultén, L., 1983, The effect of citrus pectin on the absorption of nutrients in the small intestine, Human Nutr.: Clin. Nutr., 37C:171.Google Scholar
  38. Schürch, A., LLoyd, L. E., and Crapton, E. W., 1950, The use of chromic oxide as an index for determining the digestibility of a diet, J. Nutr., 50:629.Google Scholar
  39. Selvendran, R. R., 1983, The chemistry of plant cell walls, in: “DIETARY FIBRE,” G. G. Brich and K. J. Parker eds., Applied Science Publishers, London.Google Scholar
  40. Selvendran, R. R., 1984, The plant cell wall as a source of dietary fibre: chemistry and structure, Am. J. Clin. Nutr., 39:320.Google Scholar
  41. Snedecor, G. W., and Cochran, W. G., 1973, Statistical Methods, Iowa State University Press, Ames, Iowa.Google Scholar
  42. Spiller, G. A., Story, J. A., Wong, L. G., Nunes, J. D., Alton, M., Petro, M. S., Furumoto, E. J., Whittam, J. H., and Scala, J., 1986, Effect of increasing levels of hard wheat fiber on fecal weight, minerals and steroids and gastrointestinal transit time in healthy young women, J. Nutr., 116:778.Google Scholar
  43. Stephen, A. M., and Cummings, J. H., 1980, The microbial contribution to human faecal mass, J. Med. Microbiol, 13:45.CrossRefGoogle Scholar
  44. Theander, O., and Åman, P., 1979, Studies on dietary fibre. 1. Analysis and chemical characterization of water-soluble and water-insoluble dietary fibres, Sw. J. Agric. Res., 9:97.Google Scholar
  45. Theander, O., and Westerlund, E. A., 1986, Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber, J. Agric. Food Chem., 34:330.CrossRefGoogle Scholar
  46. Tindal, J.S., Kanggs, G. S., Hart, I. C., and Blanke, S. A., 1978, Release of growthhormone in lactating and non-lactating goats in relation to behavior, stages of sleep, electroencephalograms, environmental stimuli and levels of prolactin, insulin, glucose and free fatty acids in circulation, J. Endocr., 76:333.CrossRefGoogle Scholar
  47. Trinder, P., 1969, Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor, Ann. Clin. Biochem., 6:24.Google Scholar
  48. Van Soest, P. J., and Robertson, J. B., 1976, Chemical and physical properties of dietary fibre, in: “Dietary fiber,” W. W. Hawkins, ed. Proc. of the Miles Symposium, Ontario, Canada.Google Scholar
  49. Walker, A. R. P., Walker, B. F., and Segal, I., 1979, Fecal pH value and its modification by dietary means in South African black and white school children, S. A. Med. J., 55:495.Google Scholar
  50. Wisker, E., Feldheim, W., Pomeranz, Y., and Meuser, F., 1985, Dietary fiber in cereals, in: “Advances in Cereal Science and Technology, Vol VII,” Y. Pomeranz, ed., American Association of Cereal Chemists, St. Paul, Minnesota.Google Scholar
  51. Wolstrup, J., and Jensen, K., 1976, Adenosine triphosphate in bovine rumen during maximum nutrient supply and starvation, J. Appl. Bact., 41:243.CrossRefGoogle Scholar
  52. Wood, P., 1986, Oat ß-glucan: Structure, location, and properties, in: “OATS chemistry and Technology,” F. H. Webster, ed. American Association of Cereal Chemistry, St. Paul, Minnesota.Google Scholar
  53. Wood, P., 1989, Physicochemical properties and physiological effect of the (1→3)(1→34)-β3-D-glucan of oats, in: “Dietary Fiber-New Developments: Physiological Effects and Physiochemical Properties,” I. Furda and C. J. Brine, eds., Plenum Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • K. E. Bach Knudsen
    • 1
  • Inge Hansen
    • 1
  • B. Borg Jensen
    • 1
  • Karin Østergård
    • 1
  1. 1.National Institute of Animal ScienceAnimal Physiology and BiochemistryTjeleDenmark

Personalised recommendations