Advertisement

A New Method for Calculation of Laser-Generated Ultrasound Pulses

  • F. Alan McDonald
Chapter
Part of the Review of Progress in Quantitative Nondestructive Evaluation book series

Abstract

The generation of acoustic pulses (in solids) by laser pulses has received considerable attention recently (an extensive review has been given by Hutchins[l]). Current applications are to nondestructive evaluation and materials characterization, where it is convenient to have a highly reproducible source requiring no contact with the sample [2–5]. The need to make these applications quantitative requires a theoretical model which:1) is based on fundamental principles; 2) allows the use of realistic sample and source properties; and 3) is readily usable by the research community without a major computational development effort. Doyle[6] and Schliechert et al.[7] have described approaches which meet the first two criteria, but which are very computation-intensive. We will describe and illustrate a new formulation[8] which meets all three criteria. Numerical calculations will be presented to illustrate the efficacy of this approach, with emphasis on the effects of finite source dimensions and sample surface modification. Comparison with previous point-source results will indicate when the latter may he used. Finally, we show that the small initial displacement “spike” observed in experiments with metal samples, is due to “mode conversion”(thermal-to-longitudinal) at the boundary, rather than to the finite size of the thermal source resulting from thermal diffusion. For the present we limit the discussion to the thermoelastic regime.

Keywords

Thermal Diffusion Axial Displacement Mode Conversion Acoustic Pulse Positive Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Hutchins, in Physical Acoustics, Vol. XVIII, ed., W. P. Mason and R. N. Thurston ( Academic, San Diego, 1988 ), p. 21–123.Google Scholar
  2. 2.
    F. A. McDonald, Can. J. Phys. 64, 1023–9 (1986).CrossRefGoogle Scholar
  3. 3.
    D. A. Hutchins and A. Tam, IEEE Trans. Ultrason., Ferroelectrics, Freq. Contr. UFFC-33, 429–449 (1986).Google Scholar
  4. 4.
    A. C. Tam, Rev. Mod. Phys. 58, 381 (1986).CrossRefGoogle Scholar
  5. 5.
    A. C. Tam, in Photoacoustic and Thermal Wave Phenomena in Semiconductors, ed., A. Mandelis ( Elsevier, New York, 1987 ).Google Scholar
  6. 6.
    P. A. Doyle, J. Phys. D-Appl. Phys. 19, 1613–23 (1986).CrossRefGoogle Scholar
  7. 7.
    U. Schleichert, M. Paul, B. Hoffman, K. L. Langenberg, and W. Arnold, in Photoacoustic and Photothermal Phenomena Springer Ser. in Opt. Sci., Vol. 58, ed., P. Hess and J. Pelzl ( Springer-Verlag, Berlin, 1988 ), p. 284.Google Scholar
  8. 8.
    F. A. McDonald, Appl. Phys. Lett. 54, 1504–6 (1989).CrossRefGoogle Scholar
  9. 9.
    V. I. Danilovskaya, J. Appl. Math. and Mech. 14, 316–318 (1950).MathSciNetGoogle Scholar
  10. 10.
    W. Nowacki, Thermoelasticity (2nd ed) ( Addison-Wesley, Reading, 1986 ), p. 228.CrossRefMATHGoogle Scholar
  11. 11.
    R. M. White, J. Appl. Phys. 34, 3559–3567 (1963).CrossRefGoogle Scholar
  12. 12.
    C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, J. Appl. Phys. 51, 6210–6216 (1980).CrossRefGoogle Scholar
  13. 13.
    R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, and C. B. Scruby, J. Appl. Phys. 53, 4064–71 (1982).CrossRefGoogle Scholar
  14. 14.
    L. R. Rose, J. Acoust. Soc. Am. 75, 723–732 (1984).MATHGoogle Scholar
  15. 15.
    K. L. Telschow and R. J. Conant, Proc. 3rd Intern. Symp. Nondestr. Charact. Materials (to be published).Google Scholar
  16. 16.
    F. A. McDonald, V. Gutfeld, and R. W. Dreyfus, in IEEE 1986 Ultrasonics Symposium Proceedings(IEEE, New York, 1986 ), p. 403.Google Scholar
  17. 17.
    F. A. McDonald, R. W. Dreyfus, and V. Gutfeld, in Proc. 1987 IEEE Ultrasonics Symposium(IEEE, New York, 1987 ), p. 1179.Google Scholar
  18. 18.
    F. A. McDonald, in Proc. 1988 IEEE Ultrasonics Symposium(IEEE, New York, 1988 ), p. 465–468.Google Scholar
  19. 19.
    D. S. Chandrasekharaiah, Appl. Mech. Rev. 39, 355–376 (1986).CrossRefMATHGoogle Scholar
  20. 20.
    K. S. Crump, J. ACM 23, 89 (1976).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    R. J. Conant and K. L. Telschow, in Rev. Prog. Quant. NDE, Vol. 8, ed., Thompson, D.O. ( Plenum, New York, 1989 ).Google Scholar
  22. 22.
    J. C. Strikwerda and A. M. Scott, J. Thermal Stresses 7, 1–17 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • F. Alan McDonald
    • 1
  1. 1.IBM Research DivisionIBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations