Multimode Diffraction Tomography with Elastic Waves

  • Th. Kreutter
  • K. J. Langenberg
Part of the Review of Progress in Quantitative Nondestructive Evaluation book series


In recent years ultrasonic imaging procedures have been developed to quantify defects [1,2,3,4] for application in QNDE or medical imaging. The demands for these purposes are high resolution images, true recovering of the scattering geometry and fast computer processing. But most of the published algorithms require certain assumptions as: plane wave excitation, measurements in the farfield of the scatterer or, which is a very serious restriction, scalar wave propagation.


Wave Mode Singular Function Turbine Shaft Stress Free Boundary Condition Quantitative Nondestructive Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.J. Devaney, G. Beylkin: Diffraction tomography using arbitrary transmitter and receiver surfaces. Ultrasonic Imaging 6 (1984) 181Google Scholar
  2. 2.
    C. Esmersoy, M.L. Oristaglio, B.C. Levy: Multidimensional Born velocity inversion: Single wideband point source. J. Acoust. Soc. Amer. 78 (1985) 1052–1057CrossRefMATHGoogle Scholar
  3. 3.
    G.T. Herman, H.K. Tuy, K.J. Langenberg, P. Sabatier: Basic Methods of Tomography and Inverse Problems. Adam Hilger, Techno House, Bristol (1987)Google Scholar
  4. 4.
    K. J. Langenberg: Introduction to the Special Issue on Inverse Problems. Wave Motion 11 (1989) 99–112CrossRefMATHGoogle Scholar
  5. 5.
    Th. Kreutter: Elastodynamische Inverse Beugungstheorie. Ph. D. Thesis, University of Kassel 1989 (in preparation)Google Scholar
  6. 6.
    Yih-Hsing Pao, V. Varatharajulu: Huygens’ principle, radiation conditions, and integral formulas for the scattering of elastic waves. J. Acoust. Soc. Am., Vol. 59, No. 6 (1976) 1361–1371MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    N. Bleistein: Mathematical Methods for wave phenomena. Academic press, London (1984)MATHGoogle Scholar
  8. 8.
    K.-Mayer, R. Marklein, K. J. Langenberg, T. Kreutter: A 3D ultrasonic imaging system based on FT-SAFT. Ultrasonics (1989) (to appear)Google Scholar
  9. 9.
    K.J. Langenberg, U. Aulenbacher, G. Bollig, P. Fellinger, H. Morbitzer, G. Weinfurter, P. Zanger, V. Schmitz: Numerical Modelling of Ultrasonic Scattering. In: Mathematical Modelling in Nondestructive Testing, Eds.: M. Blakemore, G.A. Georgiou, Clarendon Press, Oxford (1988)Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Th. Kreutter
    • 1
  • K. J. Langenberg
    • 1
  1. 1.Dept. Electrical EngineeringUniversity of KasselKasselGermany

Personalised recommendations