Advertisement

An Improved Method to Measure Slow Compressional Wave in Fluid-Saturated Porous Plates by Using Lamb Modes

  • Qiang Xue
  • Laszlo Adler
Chapter
Part of the Review of Progress in Quantitative Nondestructive Evaluation book series

Abstract

The theory of elastic wave propagation in fluid-saturated porous solids was established by Biot in 1956 [1,2]. Biot predicted the existence of three bulk modes: fast compressional wave, slow compressional wave, and shear wave. However, experimental confirmation of Biot’s theory at ultrasonic frequencies was not achieved until 1980 when Plona [3] observed slow compressional waves on fluid-saturated synthetic porous solids by using mode conversion technique. Since that time, Plona’s method has been adopted as a major approach to measure slow compressional wave in fluid-saturated porous media.

Keywords

Free Boundary Dispersion Curve Slow Wave Rayleigh Wave Lamb Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Biot, J. Acoust. Soc. Am. 28, 168 (1956).MathSciNetCrossRefGoogle Scholar
  2. 2.
    M.A. Biot, J. Acoust. Soc. Am. 28, 179 (1956).MathSciNetCrossRefGoogle Scholar
  3. 3.
    T.J. Plona, Appl. Phys. Lett. 36, 259 (1980).CrossRefGoogle Scholar
  4. 4.
    D.L. Johnson and T.J. Plona, J7-Acoust. Soc. Am. 72, 556 (1982).CrossRefGoogle Scholar
  5. 5.
    Q. Xue, K. Wu, L. Adler, A. Jungman, and G. Quentin, Review of Progress in QNDE, Vol. 8A, Plenum, New York, 213 (1989).Google Scholar
  6. 6.
    S. Feng and D.L. Johnson, J. Acoust. Soc. Am. 79, 906 (1983).CrossRefGoogle Scholar
  7. 7.
    D.E. Chimenti and A.H. Nayfeh, Appl. Phys. Lett. 49, 492 (1986).CrossRefGoogle Scholar
  8. 8.
    S.I. Rokhlin, D.E. Chimenti, and A.H. Nayfeh, Review of Progress in QNDE, Vol. 8A, Plenum, New York, 213 (1989).Google Scholar
  9. 9.
    L.M. Brekhovskikh, Waves in Layered Media, Academic, New York, 74 (1960).Google Scholar
  10. 10.
    J.G. Berryman, Appl. Phys. Lett. 37, 382 (1980).CrossRefGoogle Scholar
  11. 11.
    R.C. Weast, Handbook of Chemistry and Physics, 51 ed., The Chemical Rubber Co. (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Qiang Xue
    • 1
  • Laszlo Adler
    • 1
  1. 1.The Ohio State UniversityColumbusUSA

Personalised recommendations