Nonlinear Acoustic Effects in Rocks and Soils

  • Brian P. Bonner
  • B. J. Wanamaker
Part of the Review of Progress in Quantitative Nondestructive Evaluation book series


When natural materials are loaded by a stress field, dramatic changes in modulus occur as the microstructure deforms, even if there is no permanent macroscopic damage. The effect is primarily due to pervasive, thin microfractures which easily close under load. The pressure derivative of a generalized elastic modulus, M=dC/dP, for most intact solids equals ~5, but can be two orders of magnitude higher for rocks and soils [1]. Nonlinear terms in the stress strain relation that governs material response can therefore be very important. Measurements of longitudinal and shear velocity under hydrostatic and uniaxial loading for various rocks are reported to illustrate these phenomena. Observations of amplitude dependent attenuation are presented to show direct evidence of nonlinear behavior. New results presented here for partially saturated rocks show the strongest nonlinear response yet reported.


Shear Velocity Crack Density Pressure Derivative Lawrence Livermore National Laboratory Input Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Birch and D. Bancroft, J. Geol. 46, 59 (1938).CrossRefGoogle Scholar
  2. 2.
    M. Breazeale, this volume, (1989).Google Scholar
  3. 3.
    F. Birch, J. Appl. Phys. 8, 129 (1937).CrossRefGoogle Scholar
  4. 4.
    D. Lazarus, Phys. Rev. 76, 545 (1949).CrossRefGoogle Scholar
  5. 5.
    R. Schock, A. Abey, B. Bonner, A. Duba, and H. Heard, Lawrence Livermore Laboratory Report, UCRL-51447, (1973).Google Scholar
  6. 6.
    F. P. Sears and B. P. Bonner, IEEE Trans. on Geoscience.and Remote Sensing, GE-19, 95 (1981).Google Scholar
  7. 7.
    R. B. Gordon and L. A. Davis, J. Geophys. Res. 73, 3917 (1968).CrossRefGoogle Scholar
  8. 8.
    R. R. ‘Stewart and M. N. Toksoz, J. Geophys. Res. 88, 546 (1983).CrossRefGoogle Scholar
  9. 9.
    H. B. Seed, R. T. Wong, I. M. Idriss, and K. Tokimatsu, J. Geotech. Eng. Div., ASCE, 112, 1016 (1986).CrossRefGoogle Scholar
  10. 10.
    H. B. Seed, and I. Idriss, J. Geotech. Eng. Div., ASCE, 95, 99 (1969).Google Scholar
  11. 11.
    B. R. Tittmann, Rockwell Science Center Report, SC5320.5FR, (1983).Google Scholar
  12. 12.
    K. Winkler, A. Nur, and M. Gladwin. Nature 277, 528 (1979).CrossRefGoogle Scholar
  13. 13.
    R. B. Gordon and D. Rader, in The Structure and Physical Properties of the Earth’s Crust, edited by J. G. Heacock, Geophysical Monogr. Ser.,14 (American Geophysical Union, Washington, D. C. 1971 ) pp. 235–242.Google Scholar
  14. 14.
    B. P. Bonner, B. J. Wanamaker and S. R. Taylor, in Proceedings of the DOE!LLNL Symposium on Explosion Source Phenomenology, edited by H. J. Patton and S. R. Taylor, ( Lawrence Livermore National Laboratory, Livermore, CA, 1989 ) pp. 37–43.Google Scholar
  15. 15.
    P. A. Johnson, T. A. Shankland, R. J. O’Connell, and J. N. Albright, J. Geophys. Res. 92, 3597 (1987).CrossRefGoogle Scholar
  16. 16.
    P. A. Johnson and T. A. Shankland, J. Geophys. Res., in press (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Brian P. Bonner
    • 1
  • B. J. Wanamaker
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations