Nonlinear Acoustic Properties of Structural Materials — A Review

Part of the Review of Progress in Quantitative Nondestructive Evaluation book series


One of the most obvious manifestations of the nonlinear stress-strain relation in elastic solids is the existence of thermal expansion due to a non-parabolic atomic potential. From the acoustic point of view, this nonlinearity immediately explains a variety of observations such as stress effects on the sound propagation velocities and acoustic harmonic generation, which is basically a distortion of the wave. Additional nonlinearities come about due to dislocation motion, or the initiation of plastic flow, and the nucleation of a new phase, such as in the case of a martensitic transformation, e.g. Other examples are nonlinear acoustic effects that are induced at free and internal surfaces caused for a variety of reasons. Detailed acoustic experiments on these phenomena have been made over the past forty years but the ideas have not been applied seriously in NDE. The present paper is a short review of work, some of which this author has been involved in. The objective is to show the utility of nonlinear acoustics for NDE of structural materials.


Harmonic Generation Nonlinear Acoustics High Strength Aluminum Alloy Knoop Hardness Order Elastic Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Poynting, Proc. Royal Soc. London A82, 546 (1909).MATHGoogle Scholar
  2. 2.
    J. H. Poynting, Proc. Royal Soc. London A86, 534 (1912).MATHGoogle Scholar
  3. 3.
    F. Birch, J. Apl. Phys. 8, 129 (1937).CrossRefGoogle Scholar
  4. 4.
    F. D. Murnaghan, Finite Deformation of an Elastic Solid ( John Wiley and Sons, New York, 1951 ).MATHGoogle Scholar
  5. 5.
    R. N. Thurston and K. Brugger, Phys. Rev. 133, A1604 (1964).CrossRefGoogle Scholar
  6. 6.
    A. Seeger and O. Buck, Z. Naturf. 15a, 1056 (1960).MATHGoogle Scholar
  7. 7.
    T. Bateman, W. P. Mason and H. J. McSkimin, J. Appl. Phys 32, 928 (1961).CrossRefGoogle Scholar
  8. 8.
    J. F. Smith and J. D. Greiner, J. Metals 32, 34 (1980).Google Scholar
  9. 9.
    R. N. Thurston and K. Brugger, Phys. Rev. 133, A1604 (1964).CrossRefGoogle Scholar
  10. 10.
    G. S. Kino, D. M. Barnett, N. Grayeli, G. Herrmann, J. B. Hunter, D. B. Ilic, G. C. Johnson, R. B. King, M. P. Scott, J. C. Shyne, and C. R. Steel, J. Nondestruct. Eval. 1, 67 (1980).CrossRefGoogle Scholar
  11. 11.
    A. V. Clark, R. B. Mignogna, and R. J. Sanford, Ultrasonics 21, 57 (1983).CrossRefGoogle Scholar
  12. 12.
    M. A. Breazeale and D. O. Thompson, Appl. Phys. Letter 3, 77 (1963).CrossRefGoogle Scholar
  13. 13.
    E. Fubini-Ghíron, Alta Frequenza 4, 530 (1935).Google Scholar
  14. 14.
    R. B. Thompson, O. Buck, and D. O. Thompson, J. Acoust. Soc. Am. 59, 1087 (1976).CrossRefGoogle Scholar
  15. 15.
    O. Buck and D. O. Thompson, Mat. Science Engr. 1, 117 (1966).CrossRefGoogle Scholar
  16. 16.
    D. O. Thompson, M. A. Tennison and O. Buck, J. Acoust. Soc. Am. 44, 435 (1968).Google Scholar
  17. 17.
    O. Buck, L. A. Ahlberg, L. J. Graham, G. A. Alers, C. A. Wert and K. C. Hsieh, phys. stat. sol. (a) 55, 223 (1979).CrossRefGoogle Scholar
  18. 18.
    J. S. Heyman, S. G. Allison, K. Salama, and S. L. Chu, in Nondestructive Evaluation: Applications to Materials Processing, edited by O. Buck and S. M. Wolf (Am. Soc. Metals, Metals Park, OH, 1984 ) p. 177.Google Scholar
  19. 19.
    M. R. James and O. Buck, CRC Critical Reviews in Solid State and Materials Sciences 9, 61 (1980).CrossRefGoogle Scholar
  20. 20.
    S. Razvi, P. Li, K. Salama, J. H. Cantrell, and W. T. Yost, in Review of Progress in Quantitative NDE, edited by D. O. Thompson and D. E. Chimenti ( Plenum Press, New York and London, 1987 ) Vol. 6B, p. 1403.Google Scholar
  21. 21.
    W. T. Yost, J. H. Cantrell, and M. A. Breazeale, J. Appl. Phys 52, 126 (1981).CrossRefGoogle Scholar
  22. 22.
    D. de Fontaine and O. Buck, Phil. Mag. 27, 967 (1973).CrossRefGoogle Scholar
  23. 23.
    O. Buck, D. O. Thompson, N. E. Paton, and J. C. Wiliams, in Internal Friction and Ultrasonic Attenuation in Crystalline Solids, edited by D. Lenz and K. Lücke ( Springer Verlag, Berlin, 1975 ) Vol. 1, p. 451.CrossRefGoogle Scholar
  24. 24.
    A. Hikata and C. Elbaum, Phys. Rev. 144, 469 (1966).CrossRefGoogle Scholar
  25. 25.
    A. Hikata, F. A. Sewell, and C. Elbaum, Phys. Rev. 151, 442 (1966).CrossRefGoogle Scholar
  26. 26.
    O. Buck, IEEE Trans. Sonics and Ultrasonics SU-23, 346 (1976).Google Scholar
  27. 27.
    J. M. Richardson, Int. J. Eng. Sci. 17, 73 (1979).CrossRefMATHGoogle Scholar
  28. 28.
    O. Buck, W. L. Morris and J. M. Richardson, Appl. Phys. Letters 33, 371 (1978).CrossRefGoogle Scholar
  29. 29.
    W. L. Morris, O. Buck, and R. V. Inman, J. Appl. Phys. 50, 6737 (1979).CrossRefGoogle Scholar
  30. 30.
    J.-M. Baik and R. B. Thompson, J. Nondestr. Eval. 4, 177 (1984).CrossRefGoogle Scholar
  31. 31.
    J. D. Achenbach, O. K. Parikh, and D. A. Sotiropoulos, in Review of Progress in Quantitative NDE, edited by D. O. Thompson and D. E. Chimenti ( Plenum Press, New York and London, 1989 ) Vol. 8B, p. 1401.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • O. Buck
    • 1
  1. 1.Ames Laboratory and Materials Science and Engineering DepartmentIowa State UniversityAmesUSA

Personalised recommendations