Advertisement

Materials Characterization Using Acoustic Nonlinearity Parameters and Harmonic Generation: Effects of Crystalline and Amorphous Structures

  • John H. Cantrell
  • William T. Yost
Chapter
Part of the Review of Progress in Quantitative Nondestructive Evaluation book series

Abstract

The importance of nonlinearity in the description of material behavior is gaining widespread attention. Nonlinearity plays a major, if not dominating, role in a number of material properties. For example, properties that are important in engineering design such as thermal expansion or the pressure dependence of optical refraction are inherently nonlinear [1]. New assembley techniques such as the use of ultrasonic gauges to determine the loading of critical fasteners depend upon nonlinear properties of the fasteners [2]. Areas of considerable fundamental interest in nonlinearity include lattice dynamics [3], radiation stress in solids [4,5], and nonlinear optics [6].

Keywords

Nonlinearity Parameter Static Displacement Quadratic Nonlinearity Radiation Stress Vitreous Silica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Collins and G. K. White, “Thermal expansion of solids”, in Progress in Low Temperature Physics, edited by C. J. Gorter (Wiley, New York, 1964), vol.4.Google Scholar
  2. 2.
    J. S. Heyman and E. J. Chern, J. Testing and Evaluation 10, 202 (1982).CrossRefGoogle Scholar
  3. 3.
    D. C. Wallace, Rev. Mod. Phys. 37, 57 (1965).CrossRefGoogle Scholar
  4. 4.
    J. H. Cantrell, Phys. Rev. B 30, 3214 (1984).CrossRefGoogle Scholar
  5. 5.
    W. T. Yost and J. H. Cantrell, Phys. Rev. B 30, 3221 (1984).CrossRefGoogle Scholar
  6. 6.
    N. Bloembergen, Nonlinear Optics (W. A. Benjamin, New York, 1965 ).Google Scholar
  7. 7.
    See, for example, W. T. Yost, J. H. Cantrell, and M. A. Breazeale, J. Appl. Phys. 52, 126 (1981).CrossRefGoogle Scholar
  8. 8.
    J. H. Cantrell, Phys. Rev. B 21, 4191 (1980).CrossRefGoogle Scholar
  9. 9.
    W. T. Yost and J. H. Cantrell, J. Acoust. Soc. Am. 73, Suppl. 1, 82 (1983).CrossRefGoogle Scholar
  10. 10.
    K. Salama and G. A. Alers, Phys. Rev. 161, 673 (1967).CrossRefGoogle Scholar
  11. 11.
    Y. Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966).CrossRefGoogle Scholar
  12. 12.
    T. Bateman, W. P. Mason, and H. J. McSkimin, J. Appl. Phys. 32, 928 (1961).CrossRefGoogle Scholar
  13. 13.
    K. Brugger, Phys. Rev. 133, A1611 (1964).CrossRefGoogle Scholar
  14. 14.
    D. C. Wallace, in Solid State Physics, edited by F. Seitz and D. Turnbull ( Academic, New York, 1967 ).Google Scholar
  15. 15.
    R. B. Thompson and H. F. Tiersten, J. Acoust. Soc. Am. 62, 33 (1977).CrossRefMATHGoogle Scholar
  16. 16.
    R. N. Thurston and M. J. Shapiro, J. Acoust. Soc. Am. 41, 1112 (1967).CrossRefGoogle Scholar
  17. 17.
    S. Earnshaw, Philos. Trans. R. Soc. London 150, 133 (1860).CrossRefGoogle Scholar
  18. 18.
    E. Fubini-Ghiron, Alta Freq. 4, 530 (1935).Google Scholar
  19. 19.
    M. A. Breazeale and J. Ford, J. Appl. Phys. 36, 3486 (1965).CrossRefGoogle Scholar
  20. 20.
    Z. A. Goldberg, in High Intensity Ultrasonic Fields, edited by L. D. Rozenburg ( Plenum, New York, 1971 ).Google Scholar
  21. 21.
    Lord Rayleigh, Philos. Mag. 3, 338 (1902)CrossRefMATHGoogle Scholar
  22. 22.
    L. Brillouin, Ann. Phys. (Paris) 4, 528 (1925)MATHGoogle Scholar
  23. 23.
    L. Brillouin, Tensors in Mechanics and Elasticity ( Academic, New York, 1965 ).Google Scholar
  24. 24.
    B.-T. Chu and R. E. Apfel, J. Acoust. Soc. Am. 72, 1673 (1982).CrossRefGoogle Scholar
  25. 25.
    R. T. Beyer, J. Acoust. Soc. Am. 63, 1025 (1978).Google Scholar
  26. 26.
    P. H. Carr and A. J. Slobodnik, J. Appl. Phys. 38, 5153 (1967).CrossRefGoogle Scholar
  27. 27.
    J. H. Cantrell and W. P. Winfree, Appl. Phys. Lett. 37, 785 (1980).CrossRefGoogle Scholar
  28. 28.
    M. A. Breazeale and J. Philip, in Physical Acoustics, vol. 17, edited by W. P. Mason and R. N. Thurston ( Academic, New York, 1984 ).Google Scholar
  29. 29.
    J. H. Cantrell, W. T. Yost, and P. Li, Phys. Rev. B 35, 9780 (1987).CrossRefGoogle Scholar
  30. 30.
    P. Li, W. P. Winfree, W. T. Yost, and J. H. Cantrell, Proc IEEE Ultrasonics Symposium, IEEE Cat. No. 83CH1947–1 ( Institute of Electrical and Electronics Engineers, New York, 1983 ), p. 1152.Google Scholar
  31. 31.
    J. H. Cantrell, Proc. Inst. of Acoustics (U.K.), Vol. 11 (part 5), 1989, p. 445.Google Scholar
  32. 32.
    J. H. Cantrell and M. A. Breazeale, Phys. Rev. B 17, 4864 (1978).CrossRefGoogle Scholar
  33. 33.
    J. H. Cantrell, Ultrasonics International 1985 Conference Proc., edited by Z. Novak ( IPC Science and Technology Press, Guildford, Surrey, U.K., 1985 ), p. 551.Google Scholar
  34. 34.
    J. H. Cantrell, in preparation.Google Scholar
  35. 35.
    J. H. Cantrell, Proc. IEEE Ultrasonics Symposium, IEEE Cat. No. 86CH2375–4 ( Institute of Electrical and Electronics Engineers, New York, 1986 ), p. 1079.Google Scholar
  36. 36.
    J. H. Cantrell, Ultrasonics International 1989 Conference Proc. (Butterworth, Guildford, Surrey, U.K.), to be published.Google Scholar
  37. 37.
    See, for example, J. F. Currie, J. A. Krumhansl, A. R. Bishop, and S. E. Trullinger, Phys. Rev. B 22, 477 (1980).MathSciNetCrossRefGoogle Scholar
  38. 38.
    H. Huang, W. T. Yost, and J. H. Cantrell, Proc. IEEE Ultrasonics Symposium, IEEE Cat. No. 87CH2492–7 ( Institute of Electrical and Electronics Engineers, New York, 1987 ), p. 1131.Google Scholar
  39. 39.
    S. Razvi. W. T. Yost, in Review of Progress in Quantitative Nondestructive Evaluation, vol. 6, edited by D. O. Thompson and D. E. Chimenti ( Plenum, New York, 1987 ).Google Scholar
  40. 40.
    J. H. Cantrell, W. T. Yost, S. Razvi, P. Li, and K. Salama, Proc. IEEE Ultrasonics Symposium, IEEE Cat, No. 86CH2375–4 ( Institute of Electrical and Electronics Engineers, New York, 1986 ), p. 1075.Google Scholar
  41. 41.
    O. Buck and G. A. Alers, in Fatigue and Microstructure (American Society for Metals, Metals Park, Ohio, 1979 ), p. 101.Google Scholar
  42. 42.
    W. T. Yost and J. H. Cantrell, in Review of Progress in Ouantitative Nondestructive Evaluation, edited by D. O. Thompson and D. E. Chimenti (Plenum, New York, 1990), this volume.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • John H. Cantrell
    • 1
  • William T. Yost
    • 2
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK
  2. 2.NASA Langley Research CenterHamptonUSA

Personalised recommendations