Multiparameter Ultrasonic Evaluation of Thick Composite Materials

  • Robert F. Murphy
  • Robert W. Reed
  • Thomas J. Batzinger
Part of the Review of Progress in Quantitative Nondestructive Evaluation book series


Traditional pulse-echo ultrasonic NDE techniques are useful in the evaluation for structural flaws in components manufactured from homogeneous materials (i.e. most metals). However, composite materials are often neither homogeneous nor isotropic which decreases the sensitivity of traditional techniques by making the resultant data difficult to interpret. Composite materials also tend to attenuate the ultrasonic energy to a greater degree than metals decreasing the signal-to-noise ratio needed for confident flaw detection. The attenuation is attributed to the absorption of energy by the matrix and the scattering of energy due to the inherent scatterers in the system such as fibers and small voids or porosity. For very thick composites these difficulties are amplified. In addition, a component of the attenuation due to ultrasonic beam spreading increases with thickness. As the beam spreads, spatial resolution is lost as well.


Scattered Amplitude High Attenuation Impact Damage Dual Frequency Beam Spread 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. F. Murphy, R. W. Reed, and R. S. Williams, Proceedings Nondestructive Testing and Evaluation of Advanced Materials and Composites Conference, Aug. 19–21, 1986, U. S. Air Force Academy, pp. 135–147, NTIAC, NMCIAC, MCIC.Google Scholar
  2. 2.
    R. F. Murphy, and R. W. Reed, Proceedings 20th International SAMPE Technical Conference, Sept. 27–29, 1988, Minneapolis, MN., pp. 481–489, Chess, Prosen, Davis, Heth, eds., SAMPE.Google Scholar
  3. 3.
    Lord Rayleigh, “Theory of Sound”, The MacMillan Company, New York, 1929, Vol. II, p. 152.Google Scholar
  4. 4.
    W. P. Mason and H. J. McSkimin, Jl. of Acoust. Soc. Am., 12, p. 464 (1947).CrossRefGoogle Scholar
  5. 5.
    W. P. Mason and H. J. McSkimin, Jl. of Appl. Phys., 12, p. 940 (1948).CrossRefGoogle Scholar
  6. 6.
    H. J. Roth, Jl. of Appl. Phys., 11, p. 901 (1950).Google Scholar
  7. 7.
    H. B. Huntington, Jl. of Acoust. Soc. Am., 21, p. 362 (1950).CrossRefGoogle Scholar
  8. 8.
    I. M. Lifshitz and G. D. Parkhomovskii, Zh. Eksp. Teor. Fiz., 22, p. 175 (1950).Google Scholar
  9. 9.
    A. B. Bhatia, “Ultrasonic Absorption”. Oxford Press, p. 282 (1967).Google Scholar
  10. 10.
    L. G. Werkulov, Zh. Tekh. Fiz., 27, p. 1045 (1957).Google Scholar
  11. 11.
    E. P. Papadakis, J. of Acoust. Soc. Am., 32., p. 1628 (1960).CrossRefGoogle Scholar
  12. 12.
    A. B. Bhatia, J. of Acoust. Soc. Am. 31, p. 16 (1959).MathSciNetCrossRefGoogle Scholar
  13. 13.
    P. M. Morse, Vibration and Sound, McGraw-Hill Book Co., p. 354 (1948).Google Scholar
  14. 14.
    S. Serabian, Materials Evaluation, 26, p. 41 (1968).Google Scholar
  15. 15.
    R. S. Roderick and R. Truell, Jl. of Appl. Phys., 23, p. 267, (1952).CrossRefGoogle Scholar
  16. 16.
    S. Serabian and R. S. Williams, Materials Evaluation, 36, p. 55, (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Robert F. Murphy
    • 1
  • Robert W. Reed
    • 1
  • Thomas J. Batzinger
    • 1
  1. 1.United TechnologiesResearch CenterEast HartfordUSA

Personalised recommendations