Scanning Tunneling Microscopy for Morphological Characterization of InN Thin Films

  • R. Fainchtein
  • D. Dayan
  • W. A. Bryden
  • J. C. Murphy
  • T. O. Poehler
Part of the Review of Progress in Quantitative Nondestructive Evaluation book series


InN is a promising semiconductor material because of its wide energy band gap (~ 2 eV). This characteristic makes the material, in concert with analogous group III metal nitrides, suitable for the production of electromagnetic sources and detectors tuned to cover the visible part of the optical spectrum. In order to make the appropriate electronic devices thin films of InN of good quality material have to be produced. This is so far the issue preventing the utilization of this material for device applications. Several techniques of film deposition have been and continue to be investigated in order to obtain device quality material. Among them, reactive magnetron sputtering offers to be a promising deposition technique. Crystalline films produced by reactive magnetron sputtering and other deposition techniques exhibit columnar microstructure. The structure consists of a network of low density material or voids that surrounds an array of parallel rod-shaped columnar regions of higher density. The formation of those columns are known to depend on the deposition parameters. Among them are the nature of the substrate [1], the rate of deposition [2], the pressure and composition of the gas phase [3], the film thickness and the ratio between the substrate temperature Ts and the film material melting point Tm [4,5]. The presence of microscopic voids within the grains contributes to the degradation of the surface flatness and to the formation of surface porosity [6].


Substrate Temperature Thin Solid Film Bulk Diffusion Reactive Magnetron Metal Nitrides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Zembutsu and M. Kobayashi, Thin Solid Films, 129, 289 (1985).CrossRefGoogle Scholar
  2. 2.
    K. Okamoto, T, Hashimoto, K. Hara, M. Kamia and H. Fujiwara, Thin Solid Films, 147, 299 (1987).CrossRefGoogle Scholar
  3. 3.
    M. J. Deen, Thin Solid Films, 152, 535 (1987).CrossRefGoogle Scholar
  4. 4.
    J. Jurusik and L. Zdanowicz, Thin Solid Films, 67, 285 (1980).CrossRefGoogle Scholar
  5. 5.
    M. Lottiaux, C. Boudesteix, G. Nihoul, F. Vaznier, F. Flory, R. Galindo and E. Peiltier, Thin Solid Films, 170, 107 (1989).CrossRefGoogle Scholar
  6. 6.
    G. Hakansson, J.E. Sundgren, D. McIntyre, J.E. Greene and W.D. Munz, Thin Solid Films, 153, 55 (1987).CrossRefGoogle Scholar
  7. 7.
    M.C. Maddew, Thin Solid Films, 154, 43 (1987).CrossRefGoogle Scholar
  8. 8.
    J. Jurusik and L. Zdanowicz, Thin Solid Films, 144, 241 (1986).CrossRefGoogle Scholar
  9. 9.
    D.G. Iver, G.R. Piercy, Thin Solid Films, 149, 73 (1987).Google Scholar
  10. 10.
    W. A. Bryden, T. J. Kistenmacher, D. K. Wickenden, J. S. Morgan, A. Estes Wickenden, S. A. Ecelberger and T. O. Poehler, Johns Hopkins APL Technical Digest, 10, 3 (1989).Google Scholar
  11. 11.
    Nanoscope II from Digital Instruments, Inc., 135 Nogal Drive, Santa Barbara, California 93110.Google Scholar
  12. 12.
    E. W. Muller and T. T. Tsong, Field Ion Microscopy (American Elseiver Publishing Co. Inc., New York, 1969 ).Google Scholar
  13. 13.
    R. C. Gifkins, Optical Microscopy of Metals (American Elseiver Publishing Co. Inc., New York 1970 ).Google Scholar
  14. 14.
    J. A. Thornton, J. Vac. Sci. Technol. A 4, 3059 (1986).CrossRefGoogle Scholar
  15. 15.
    J. A. Thornton, in Semiconductor Materials and Process Technology Handbook ed. by G.E. McGuire (Noyes Publications, Park Ridge, New Jersey, U.S.A. 1988 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • R. Fainchtein
    • 1
  • D. Dayan
    • 2
  • W. A. Bryden
    • 1
  • J. C. Murphy
    • 1
  • T. O. Poehler
    • 1
  1. 1.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA
  2. 2.Nuclear Research Center NegevBeer ShevaIsrael

Personalised recommendations