Advertisement

Material Analysis by Infrared Microimaging

  • Richard T. Carl
  • Matthew J. Smith
Chapter
Part of the Review of Progress in Quantitative Nondestructive Evaluation book series

Abstract

During the past few years, infrared microspectroscopy has progressed from an exotic and difficult technique to a routine method of analysis. This is due to the merger of highly sensitive Fourier transform infrared spectrometers with precision infrared and optical microscopes. Infrared microspectroscopy is now a widely used technique in the fields of failure analysis, forensic chemistry and polymer science. Typically, an experiment would involve obtaining a single infrared spectrum of a trace contaminate or investigation of a single polymer defect.

Keywords

Surface Enhance Raman Spectroscopy Silicon Wafer Steel Surface Spectral Matrix Infrared Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Harthcock, S. C. Atkin, Appl. Spectros. 42: 449, 1988.CrossRefGoogle Scholar
  2. 2.
    M. A. Harthcock, S. C. Atkin, B. L. Davis, “Infrared microspectroscopy functional group imaging as a probe into the compositional heterogeneity of polymer blends,” Microbeam Analysis 1988, 203, 1988.Google Scholar
  3. 3.
    M. A. Harthcock, S. C. Atkin, “Infrared Microspectroscopy: Development and Applications of Imaging Capabilities,” in R. G. Messerschmidt and M. A. Harthcock, Eds., Infrared Microspectroscopy: Theory and Applications, New York: Marcel Decker, 21, 1988.Google Scholar
  4. 4.
    M. A. Harthcock and S. C. Atkin, Compositional mapping with the use of functional group images obtained by infrared microprobe spectroscopy, Microbeam Analysis 1987, 173, 1987.Google Scholar
  5. 5.
    R. B. Marienenko, R. L. Myklebust, D. S. Bright, and D. E. Newbury, Microbeam Analysis 1985, 159, 1985.Google Scholar
  6. 6.
    T. J. Manuccia, Paper #630, Federation of Analytical Chemistry and Spectroscopy Societies Meeting X III, 1986.Google Scholar
  7. 7.
    R. P. Van Duyne, K. L. Haller, and R. I. Altkorn, Chem. Phys. Lett., 126: 190, 1986.CrossRefGoogle Scholar
  8. 8.
    S. L. Smith, in S.A. Borman, Ed., Instrumentation in Analytical Chemistry, Washington, D. C.: American Chemical Society, 303, 1986.Google Scholar
  9. 9.
    R. G. Messerschmidt, “Minimizing Optical Non-Linearities in Infrared Microspectroscopy” in R. G. Messerschmidt and M. A. Harthcock, Eds., Infrared Microspectroscopy: Theory and Applications, New York: Marcel Decker, 1, 1988.Google Scholar
  10. 10.
    H. Fujiwara and J. E. Kline, Tappi J., 97, 1987.Google Scholar
  11. 11.
    H. Tomimasu, S. Ogawa, Y. Sakai, T. Yamasake, and T. Ogura, in Coating Conference Proceedings, Atlanta, Tappi Press, 35, 1986.Google Scholar
  12. 12.
    T. Hamada, M. Khone, Japan Tappi, 39: 43, 1985.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Richard T. Carl
    • 1
  • Matthew J. Smith
    • 1
  1. 1.Nicolet Instrument CorporationMadisonUSA

Personalised recommendations