Holographic Scanning Laser Acoustic Microscopy (HOLOSLAM): A New QNDE Tool

  • A. C. Wey
  • L. W. Kessler
Part of the Review of Progress in Quantitative Nondestructive Evaluation book series


Acoustic microscopy is the name given to high frequency, 10 MHz to 3 GHz ultrasonic visualization. The scanning laser acoustic microscopy (SLAM) is an important branch of acoustic microscopy which uses ultrasound in the frequency range of 10 to 200 MHz to produce high resolution ultrasonic images.1,2 In contrast to other visual observation techniques, SLAM provides direct access to the structural elastic properties of solid materials and biological tissues. By using this technique, valuable insight can be gained into mechanisms responsible for the changes of elastic architecture over areas tens of microns in diameter.


Inverse Filter Holographic Image Acoustic Signal Detection Quadrature Detection Holographic Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. W. Kessler and D. E. Yuhas, “Acoustic Microscopy-1979,” Proc. IEEE, vol. 67, no. 4, p. 526, 1979.CrossRefGoogle Scholar
  2. 2.
    L. W. Kessler, “Acoustic Microscopy Commentary: SLAM and SAM,” IEEE Trans. Sonics Ultrason., vol. SU-22, p. 136, 1985.CrossRefGoogle Scholar
  3. 3.
    L. W. Kessler and D. E. Yuhas, “Principles and Analytical Capabilities of the Scanning Laser Acoustic Microscopy,” Scan. Elec. Microscopy, vol. 1, p. 555, 1978.Google Scholar
  4. 4.
    L. W. Kessler and M. G. Oravecz, “SLAM Analysis of Advanced Materials for Internal Defects and Discontinuities,” Proc. of NDT/E of Adv. Mater. and Comp., p. 173, 1986.Google Scholar
  5. 5.
    R. L. Whitman, A. Korpel, “Probing of Acoustic Surface Perturbations by Coherent Light,” Applied Optics, vol. 8, no. 8, p. 1567, 1969.CrossRefGoogle Scholar
  6. 6.
    Z. Lin, H. Lee, G. Wade, M. Oravecz and L. W. Kessler, “Data Acquisition in Tomographie Acoustic Microscopy,” Proc. IEEE Ultrasonic Symp., p. 627, 1983.Google Scholar
  7. 7.
    G. Wade and A. Meyyappan, “Scanning Tomographie Acoustic Microscopy: Principles and Recent Developments,” SPIE vol. 768, p. 267, 1987.CrossRefGoogle Scholar
  8. 8.
    D. R. Grant and J. E. Bernardin, “Measurement of Sound Velocity with the Scanning Laser Acoustic Microscope,” J. Acoust. Soc. Am., 69 (3), p. 437–444, 1981.CrossRefGoogle Scholar
  9. 9.
    P. M. Embree, K. M. Tervola, S. G. Foster, and W. D. O’Brien, Jr., “Spatial Distribution of the Speed of Sound in Biological Materials with the Scanning Laser Acoustic Microscope,” IEEE Trans. Sonic Ultrason., vol SU-32, p. 341–350, 1985.CrossRefGoogle Scholar
  10. 10.
    R. Y. Chiao and H. Lee, “ High Resolution Velocity Images Using the Scanning Laser Acoustic Microscope,” Proc. 1988 IEEE Ultrasonic symp.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • A. C. Wey
    • 1
  • L. W. Kessler
    • 1
  1. 1.Sonoscan, Inc.BensenvilleUSA

Personalised recommendations