Surface-Displacement Imaging Using Optical Beam Deflection

  • S. E. McBride
  • G. C. WetselJr.
Part of the Review of Progress in Quantitative Nondestructive Evaluation book series


Important information on subsurface material parameters and structure is contained in the dynamics of surface motion. One of the most important techniques in quantitative nondestructive evaluation is optical sensing of surface displacement; it is noncontact, sensitive, fast, and capable of high spatial resolution. Laser interferometers in various configurations provide the ultimate in sensitivity [1]; however, due to their complexity and lack of flexibility, they may not be the first choice in applications where ultimate sensitivity is not required.


Physical Acoustics Position Sensor Surface Displacement Thickness Mode Surface Acoustic Wave Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.P. Monchalin, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 33, 485 (1986).Google Scholar
  2. 2.
    G.C. Wetsel, Jr., S. E. McBride, R. J. Warmack, B. Van de Sande, Appl. Phys. Lett. 55, 528 (1989).CrossRefGoogle Scholar
  3. 3.
    A.C. Boccara, D. Fournier, and J. Badoz, Appl. Phys. Lett. 36, 130 (1980);Google Scholar
  4. W.B. Jackson, N.M. Amer, A.C. Boccara, and D. Fournier, Appl. Opt. 20, 1333 (1981);Google Scholar
  5. 4.
    G.C. Wetsel, Jr. and S.A. Stotts, Appl. Phys. Lett. 42, 931 (1983).Google Scholar
  6. 5.
    D. Fournier and A.C. Boccara, pp. 347–351, Scanned Image Microscopy, E.A. Ash, Ed., Academic Press, London (1980);Google Scholar
  7. J.C. Murphy and L.C. Aamodt, Appl. Phys. Lett. 38, 196 (1981);CrossRefGoogle Scholar
  8. J.C. Murphy and L.C. Aamodt, Appl. Phys. Lett. 39, 519 (1981);CrossRefGoogle Scholar
  9. G.C. Wetsel, Jr. and F.A. McDonald, Appl. Phys. Lett. 41, 926 (1982).Google Scholar
  10. 6.
    M.A. Olmstead, S. Kohn, N.M. Amer, D. Fournier, and A.C. Boccara, Appl. Phys. A, 132, 68 (1983).Google Scholar
  11. 7.
    G. Meyer and N.M. Amer, Appl. Phys. Lett. 53, 1045 (1988).CrossRefGoogle Scholar
  12. 8.
    J.C. Murphy and G.C. Wetsel, Jr., Materials Evaluation 44, 1224 (1986).Google Scholar
  13. 9.
    F.A. McDonald and G.C. Wetsel, Jr., “Theory of Photothermal and Photoacoustic Effects in Condensed Matter”, pp. 167–277, Physical Acoustics, Vol. XVIII, W. P. Mason and R. N. Thurston, Eds., Academic Press, N. Y. (1988).Google Scholar
  14. 10.
    SC-25 and SPOT-2D Position-Sensing Photodiodes, United Detector Technology, Hawthorne, CA 90250.Google Scholar
  15. 11.
    Burleigh Instruments, Inc., Fishers, NY 14453.Google Scholar
  16. 12.
    D. A. Berlincourt, D. R. Curran, and H. Jaffe, “Piezoelectric and Piezomagnetic Materials and Their Function in Transducers”, Physical Acoustics, Vol. I, Part A, W. P. Mason, Ed., Academic Press, N. Y. (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • S. E. McBride
    • 1
  • G. C. WetselJr.
    • 1
  1. 1.Southern Methodist UniversityDallasUSA

Personalised recommendations