Specific Quisqualate Receptor Ligand Blocks Both Kainate and Quisqualate Responses

  • Tage Honore
  • Malcom Sheardown
  • Elsebet Ø. Nielsen
  • Jørgen Drejer
  • Anker J. Hansen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)


Excitatory amino acid (EAA) receptors were originally divided in NMDA receptors and nonNMDA receptors based on electrophysiological evidence 1. The non-NMDA subtype of excitatory amino acid receptors can be further subdivided in two types, the kainate and the quisqualate (AMPA•) receptors. GDEE discriminate between the two agonists, being more active against quisqualate induced responses, when administered ionophoretically in vivo; however, this selectivity was not seen with bath application in vitro1,6,7. Another compound GAMS, although weak, show a reasonable degree of non-NMDA receptor antagonism8. Further development of selective kainate and/or AMPA receptor antagonists has been relatively slow.


NMDA Receptor AMPA Receptor Neuronal Cell Death Excitatory Amino Acid Mongolian Gerbil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davies, J., Evans, R.H., Francis, A.A., and Watkins, J.C., 1979, Exicatory amino acid receptors and synaptic excitation in the mammalian central nervous system, J. Physiol. (Paris), 75: 641.Google Scholar
  2. 2.
    Krogsgaard-Larsen, P., Honore, P., Hansen, J.J.,Curtis, J.J., and Lodge, D., 1980, New class of glutamate agonist structurally related to ibotenic acid, Nature, 284: 64.Google Scholar
  3. 3.
    Honore, T., Lauridsen, J., and Krogsgaard-Larsen, P., 1982, the binding of (3H) AMPA, a structural analogue of glutamic acid, to rat brain membranes, J. Neurochem 38:173.Google Scholar
  4. 4.
    Sugiyama, H., Ito, I., and Hirono, C, 1987, A new type of glutamate receptor linked to inositol phospholipid metabolism, Nature, 325: 531.PubMedCrossRefGoogle Scholar
  5. 5.
    Shinozaki, H., and M. Ishida, 1988, Stizolobic acid, a competitive antagonist of the quisqualatetype receptor at the crayfish neuromuscular junction, Brain Res., 451: 353.Google Scholar
  6. 6.
    Watkins, J.C., and Evans, R.H., Excitatory amino acid transmitters, Ann. Rev. Pharm. Tox 21:165.Google Scholar
  7. 7.
    McLennan, H., 1983, Receptors for the excitatory amino acids in the mammalian central nervous system, Prog. Neurobiol., 20: 251PubMedCrossRefGoogle Scholar
  8. 8.
    Drejer, J., Honore, and Schousboe, A., 1987, Excitatory amino acid-induced release of 3H-GABA from cultured mouse cerebral cortex interneurons, J. Neuroci., 7: 2910.Google Scholar
  9. 9.
    Honore, T., Davies, S.N., Drejer, J., Fletcher, E.J., Jacobsen, P., Lodge, D., and Nielsen, F.E., 1988, Quinoxalinediones: Potent competitive non-NMDA glutamate receptor antagonist, Science, 241: 701.PubMedCrossRefGoogle Scholar
  10. 10.
    Fletcher, E.J., Martin, D., Aram, J.A., Lodge, D., and Honore, T., 1988, Quinoxalinediones selectively block quisqualate and kainate receptors and synaptic events in rat neocortex and hippocampus and frog spinal cord in vitro, Br. J. Pharmacol., 95: 585.Google Scholar
  11. 11.
    Andreasen, M., Lambert, J.D.C., and Jensen, M.S., 1988, Direct demonstration of an N-methyl-Daspartate receptor mediated component of excitatory synaptic transmission in area CA1 of the rat hippocampus, Neurosci. Lett., 93. 61.PubMedCrossRefGoogle Scholar
  12. 12.
    Drejer, J., and Honore, T., 1988, New quinoxalinediones show potent antagonism of quisqualate responses in cultured mouse cortical neurones, Neurosci. Lett 87/104.PubMedCrossRefGoogle Scholar
  13. 13.
    Blake, J.F., Brown, M.W., and Collingridge, G.L., 1988, CNQX blocks acidic amino acid induced depolarizations and synaptic components mediated by non-NMDA receptors in rat hippocampal slices, Neurosci. Lett., 89: 182.PubMedCrossRefGoogle Scholar
  14. 14.
    Birch, P.J., Grossman, C.J., and Hayes, A.G., 1988, 6,7-Dinitro-quinoxaline-2,3-dion and 6-nitro7-cyano-quinoxaline-2,3-dion antagonise responses to NMDA in the rat spinal cord via an action at the strychnine-insensitive glycine receptor, Eur.J. Pharmacol 156:177.PubMedCrossRefGoogle Scholar
  15. 15.
    Drejer, J., Sheardown, M., Nielsen, E.O., and Honore, T., 1989, Glycine reverses the effect of HA-966 on NMDA responses in cultured rat cortical neurons and in chick retina, Neurosci. Lett., 98: 333.PubMedCrossRefGoogle Scholar
  16. 16.
    Honore, T., and Nielsen, M., 1985 Complex structure of quisqualate-sensitive glutamate receptors in rat cortex, Neurosci. Lett., 54: 27.PubMedCrossRefGoogle Scholar
  17. 17.
    Honore, T., and Drejer, J., 1988, Chaotropic ions affect the conformation of quisqualate receptors in rat cortical membranes, J. Neurochem., 51: 457.PubMedCrossRefGoogle Scholar
  18. 18.
    Honore, T., Drejer, J., Nielsen, E.O., and Nielsen, M., 1989, Non-NMDA glutamate receptor antagonist 3H-CNQX binds with equal affinity to two agonist states of quisqualate receptors, Biochem. Pharmacol, in press.Google Scholar
  19. 19.
    Nielsen, E.O., Drejer, J., Cha, J.J., Young, A., and Honore, T., 1989, Autoradiographie characterization and localization of quisqualate binding sites in rat brain using the antagonist 3H-CNQX: Comparison with 3H-AMPA binding sites, J. Neurochem, in press.Google Scholar
  20. 20.
    Honore, T., Drejer, J., and Nielsen, M., 1986, Calcium discriminates two (3H) kainate binding sites with different, Neurosci. Lett., 65: 47.PubMedCrossRefGoogle Scholar
  21. 21.
    Unpublished.Google Scholar
  22. 22.
    Foster, A., Gill, R., and Woodruff, G.N., 1988, Neuroprotective effects of MK-801 in vivo: Selectivity and evidence for delayed degeneration mediated by NMDA receptor activation, J. Neurosci., 8: 4745.PubMedGoogle Scholar
  23. 23.
    Gartwaite, G., and Garthwaite, J., 1989, Quisqualate neurotoxicity: A delayed, CNQXsensitive process triggered by a CNQX-insensitive mechanism in young rat hippocampal slices, Neurosci. Lett., 99 (1–2): 113.CrossRefGoogle Scholar
  24. 24.
    Murphy S.N., and Miller R.J., 1989, Two distinct quisqualate receptors regulate Ca2+homeostasis in hippocampal neurons in vitro, Mol. Pharmacol., 35: 671.PubMedGoogle Scholar
  25. 25.
    Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N.H. 1984, Elevation of the extracellular concentrations of glutamate and aspartate,J. Neurochem., 43: 1369.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Tage Honore
    • 1
  • Malcom Sheardown
    • 1
  • Elsebet Ø. Nielsen
    • 1
  • Jørgen Drejer
    • 1
  • Anker J. Hansen
    • 1
  1. 1.Ferrosan CNS divisionSøborgDenmark

Personalised recommendations