Advertisement

Homocysteic Acid as Transmitter Candidate in the Mammalian Brain and Excitatory Amino Acids in Epilepsy

  • M. Cuénod
  • E. Audinat
  • K. Q. Do
  • B. H. Gähwiler
  • P. Grandes
  • P. Herrling
  • T. Knöpfel
  • H. Perschak
  • P. Streit
  • F. Vollenweider
  • H. G. Wieser
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)

Abstract

In this paper, we will (I) review the available evidence suggesting that homocysteic acid might be an excitatory transmitter in the mammalian central nervous system (CNS) and (II) report preliminary results on extracellular changes of excitatory amino acid (EAA) concentration in human epileptic foci.

Keywords

NMDA Receptor Purkinje Cell Excitatory Amino Acid Climbing Fiber Bergmann Glia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson W.W., Schwartzwelder H.S. and Wilson W.A., 1987, The NMDA receptor antagonist 2-amino-5-phosphonovalerate blocks stimulus train-induced epileptogenesis but not epileptiform bursting in the rat hippocampal slice, J. Neurophysiol., 57: 1–21.PubMedGoogle Scholar
  2. Audinat E., Knöpfel T. and Gähwiler B.H., 1989, Pharmacological characterization of excitatory postsynaptic potentials of Purkinje cells in organotypic co-cultures of cerebellum and inferior olive, Soc. Neurosci. Abstr. 15: 612.Google Scholar
  3. Chapman A.G., Faingold C.L., Hart G.P., Bowker H.M. and Meldrum B.S., 1986, Brain regional amino acid levels in seizure suspectible rats: changes related to sound-induced seizures, Neurochem. Int., 8: 273–279.PubMedCrossRefGoogle Scholar
  4. Cox D.W.G., Headley M.H. and Watkins J.C., 1977, Actions of L- and D-homocysteate in rat CNS: a correlation between low-affinity uptake and the time courses of excitation by microelectrophoretically applied L-glutamate analogues, J. Neurochem. 29: 579–588.PubMedCrossRefGoogle Scholar
  5. Crepel F., Dhanjal S.S. and Sears T.A., 1982, Effect of glutamate, aspartate and related derivatives on cerebellar Purkinje cell dendrites in the rat: an in vitro study, J. Physiol. (Lond.) 329: 297–317.Google Scholar
  6. Crepel F., Dupont J.J. and Gardette R., 1983, Voltage clamp analysis of the effect of excitatory amino acids and derivatives on Purkinje cell dendrites in rat cerebellar slices maintained in vitro, Brain Res. 279: 311–315.PubMedCrossRefGoogle Scholar
  7. Croucher M.J., Collins J.F. and Meldrum B.S., 1982, Anticonvulsant action of excitatory amino acid antagonists, Science, 216: 899.PubMedCrossRefGoogle Scholar
  8. Curtis D.R., and Watkins J.C., 1963, Acidic amino acids with strong excitatory actions on mammalian neurones, J. Physiol. (Lond.) 166: 1–14.Google Scholar
  9. De Sarro G.B., Meldrum B.S. and Reavill C., 1884, Anticonvulsant action of 2-amino-7-phosphonoheptanoic acid in the substantia nigra, Eur. J. Pharmacol., 106: 175.CrossRefGoogle Scholar
  10. Dingledine R., Boland L.M., Chamberlin N.L., Kawasaki K., Kleckner N.W., Traynelis S.F. and Verdoorn T.A., 1988, Amino acid receptors and uptake systems in the mammalian central nervous system, Critical Reviews in Neurobiol. 4: 1–96Google Scholar
  11. Do K.Q., Mattenberger M., Streit P. and Cuénod M., 1986a, In vitro release of endogenous excitatory sulfur-containing amino acids from various rat brain regions, J. Neurochem., 46: 779–786.PubMedCrossRefGoogle Scholar
  12. Do K.Q., Herrling P.L., Streit P., Turski W.A. and Cuénod M., 1986b, In vitro release and electrophysiological effects in situ of homocysteic acid, an endogenous N-Methyl-(D)-aspartic acid agonist, in the mammalian striatum, J. Neurosci., 6: 2226–2234.PubMedGoogle Scholar
  13. Dupont J.L., Gardette R., Crepel F., 1987, Postnatal development of the chemosensitivity of rat cerebellar Purkinje cells to excitatory amino acids. An in vitro study., Developmental Brain Res. 34: 59–68.CrossRefGoogle Scholar
  14. Engelsen B. and Elsayed S., 1984, Increased concentrations of aspartic acid in the cerebrospinal fluid of patients with epilepsy and trigeminal neuralgia: an effect of medication?, Acta Neurol. Scand., 69: 70–76.Google Scholar
  15. Fisher R.S. and Alger B.E., 1984, Electrophysiological mechanisms of kainic acid-induced epileptiform activity in the rat hippocampal slice, J. Neurosci., 4: 1312–1323.PubMedGoogle Scholar
  16. Fukuda H., Tanaka T., Kaijima M., Nakai H. and Yonemasu Y., 1985, Quisqualic acid-induced hippocampal seizures in unanesthetized cats, Neurosci. Lett., 59: 53–59.PubMedCrossRefGoogle Scholar
  17. Gähwiler B.H., 1981, Organotypic monolayer cultures of nervous tissue, J. Neurosci. Meth., 4: 329–342.CrossRefGoogle Scholar
  18. Grandes P., Cuénod M. and Streit P., 1989, Localization of homocysteate-like immunoreactivity in cerebellar climbing fibers, Eur. J. Neurosci., Suppl. 2: 18.Google Scholar
  19. Jones H.E. and Sillito A.M., 1989a, Effects of the putative neurotransmitters N-acetylaspartylglutamate (NAAG) and L-homocysteate (L-HCA) on cells in the anaesthetized feline dorsal lateral geniculate nucleus (dLGN), J. Physiol., Oxford Physiol. Soc. Meeting, 30 June -1 July: 97 P.Google Scholar
  20. Jones H.E. and Sillito A.M., 1989b, The pharmacology and action of the putative retinal neurotransmitters NAAG and L- homocysteate on cat DLGN cells, Eur. J. Neurosci., Suppl. 2: 109.Google Scholar
  21. Kim J.P., Koh J.-Y. and Choi D.W., 1987, L-Homocysteate is a potent neurotoxin on cultured cortical neurons, Brain Res., 437: 103–110.PubMedCrossRefGoogle Scholar
  22. Kimura H., Okamoto K. and Sakai Y., 1985a, Climbing and parallel fiber responses recoreded intracellularly from Purkinje cell dendrites in guinea pig cerebellar slices, Brain Res. 348: 213–219.PubMedCrossRefGoogle Scholar
  23. Kimura H., Okamoto K. and Sakai Y., 1985b, Parmacological characterization of postsynaptic receptors for excitatory amino acids in Purkinje cell dendrites in the guinea pig cerebellum. J. Pharmacobio.-Dyn. 8: 119–127.PubMedCrossRefGoogle Scholar
  24. Kimura H., Okamoto K. and Sakai Y., 1985c, Pharmacological evidence for L-aspartate as the neurotransmitter of cerebellar climbing fibers in the guinea pig, J. Physiol. (Lond.) 365: 103–119.Google Scholar
  25. Knöpfel T., Zeise M.L., Cuénod M. and Zieglgänsberger W., 1987, L-Homocysteic acid but not L-glutamate is an endogenous N- methyl-D-aspartic acid receptor preferring agonist in rat neocortical neurons in vitro, Neurosci. Lett., 81: 188–192.PubMedCrossRefGoogle Scholar
  26. Knöpfel T, Audinat E., Staub C. and Gähwiler B.H., 1989, Excitatory amino acid receptors of purkinje cells and neurons of the deep nuclei in cerebellar slice cultures, Europ. J. of Neurosci., Suppl. 2: 108.Google Scholar
  27. Llano I, Mary A., Johnson J.W., Ascher P. and Gähwiler B.H., 1988, Patch-clamp recording of amino acid-activated responses in “oganotypic” slice cultures, Proc. Natl. Acad. Sci., USA, 85: 3221–3225.PubMedCrossRefGoogle Scholar
  28. Leach M.J., Marden C.M., Miller A.A., O’Donnell R.A. and Weston S.B., 1985, Changes in cortical amino acids during electrical kindling in rats, Neuropharmacol., 24: 937–940.CrossRefGoogle Scholar
  29. Liu C.-j., Grandes P., Matute C., Cuénod M. and Streit P., 1989, Glutamate-like immunoreactivity revealed in rat olfactory bulb, hippocampus and cerebellum by monoclonal antibody and sensitive staining method. Histochem., 90: 427–445.CrossRefGoogle Scholar
  30. Mayer M.L., and Westbrook G.L., 1984, Mixed-agonist action of excitatory amino acids on mouse spinal cord neurones under voltage clamp, J.Physiol. (Lond.), 354: 29–53.Google Scholar
  31. McNamara J.O., Yeh G., Bonhaus D.W., Okazaki M. and Nadler J.V., NMDA receptor plasticity in the kindling model, In: Excitatory Amino Acids and Neuronal Plasticity, Plenum Press, in pressGoogle Scholar
  32. Meldrum B.S., Croucher M.J., Badman G. and Collins J.F., 1983, Antieptileptic action of excitatory amino acid antagonists in the photosensitive baboon, Papio papio, Neurosci. Lett., 39: 101–104.PubMedCrossRefGoogle Scholar
  33. Meldrum B., 1987, Neurotransmitter amino acids in epilepsy, In: The London Symposia (EEG Suppl. 39 ) R.J. Ellingson, N.M.F. Murray and A.M. Halliday Eds, Elsevier Sci. Publ., 191–199.Google Scholar
  34. Mewett K.N., Oakes D.J., Olverman H.J., Smith D.A.S. and Watkins J., 1983, Pharmacology of the excitatory actions of sulphonic and sulphinic amino acids. In: CNS Receptors–From Molecular Pharmacology to Behavior, P. Mandel and F.V. DeFeudis, eds, 163–174, Raven Press, New YorkGoogle Scholar
  35. Nadi N.S., Kanter D., McBridge W.J. and Aprison M.H., 1977, Effects of 3-acetylpyridine on several putative neurotransmitter amino acids in the cerebellum and medulla of the rat, J. Neurochem., 28: 661–662PubMedCrossRefGoogle Scholar
  36. Neal M.J. and Cunningham J.R., 1989, L-homocysteic acid-a possible bipolar cell transmitter in the rabbit retina, Neurosci. Lett., 102: 114–119.PubMedCrossRefGoogle Scholar
  37. Olney J.W., Price M.T., Salles K.S., Labruyere J., Ryerson R., Mahan K., Frierdich G. and Samson L., 1987, L-Homocysteic acid: An endogenous excitotoxic ligand of the NMDA receptor, Brain Res. Bull., 19: 597–602.PubMedCrossRefGoogle Scholar
  38. Ottersen O.P., 1987, Postembedding light-and electron microscopic immunocytochemistry of amino acids: description of a new model system allowing identical conditions for specificity testing and tissue processing, Exp. Brain Res. 69: 167–174.PubMedCrossRefGoogle Scholar
  39. Pullan L.M., Olney J.W., Price M.T., Compton R.P., Hood W.F., Michel J. and Monahan J.B., 1987, Excitatory amino acid receptor potency and subclass specificity of sulfur-containing amino acids, J. Neurochem., 49: 1301–1307.PubMedCrossRefGoogle Scholar
  40. Sagratella S., Frank C. and de Carolis A.S., 1987, Effects of ketamine and (+)cyclazocine on 4-aminopyridine and “magnesium free” epileptogenic activity in hippocampal slices of rats, Neuropharmacol., 26: 1181.CrossRefGoogle Scholar
  41. Savage D.D., Nadler J.V. and McNamara J.O., 1984, Reduced kainic acid binding in the rat hippocampal formation after limbic kindling, Brain Res., 323: 128–131.PubMedCrossRefGoogle Scholar
  42. Steinbusch H.W.M., Verhofstad A.A. and Joosten H.W.J., 1978, Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience, 3: 811–819.PubMedCrossRefGoogle Scholar
  43. Storm-Mathisen J., Leknes A.K., Bore A.T., Vaaland J.L., Edminson P., Haug F.M.S. and Ottersen O.P, 1983, First visualization of glutamate and GABA in neurons by immunocytochemistry, Nature, 301: 517–520.PubMedCrossRefGoogle Scholar
  44. Thomson A.M., 1989, Glycine modulation of the NMDA receptor/channel complex, TINS 12: 349–353.PubMedGoogle Scholar
  45. Toggenburger G., Wiklund L., Henke H. and Cuénod M., 1983, Release of endogenous and accumulated exogenous amino acids from slices of normal and climbing fibre-deprived rat cerebellar slices, J. Neurochem. 41: 1606–1613.PubMedCrossRefGoogle Scholar
  46. Tsai C., Wood P.L and Lehmann J., 1987, Homocysteate as a neurotransmitter candidate in the brain - presynaptic and postsynaptic characteristics, Soc. Neurosci. Abstr. 13: 210.Google Scholar
  47. Tsai C., Wood P.L. and Lehmann J., Homocysteic acid as a putative excitatory amino acid neurotransmitter. II. Presynaptic Characteristics of homocysteic acid uptake, J. Neurochem., in press.Google Scholar
  48. Vollenweider F.X., Do K.Q. and Cuénod M.: Effect of climbing fiber deprivation on release of endogenous aspartate, glutamate and hompcysteate in slices of rat cerebellar hemispheres and vermis, J. Neurochem., in press.Google Scholar
  49. Westbrook G.L. and Lothman E.W., 1983, Cellular and synaptic basis of kainic acid-induced hippocampal epileptiform activity, Brain Res., 273: 97–109.PubMedCrossRefGoogle Scholar
  50. Wieser H.G., 1987, Stereo-Electroencephalography, In: Wieser HG and Elger CE (eds), Presurgical evaluation of epileptics, Springer-Verlag, Berlin, pp 192–204.CrossRefGoogle Scholar
  51. Wieser H.G., 1988, Selective amygdalo-hippocampectomy for temporal lobe epilepsy, Epilepsia, 29: 100–113.CrossRefGoogle Scholar
  52. Wiklund L., Toggenburger G. and Cuénod M., 1984, Selective retrograde labelling of the rat olivocerebellar climbing fiber system with [3H1-D-aspartate, Neuroscience 13: 441–468.PubMedCrossRefGoogle Scholar
  53. Zeise M.L., Knöpfel T. and Ziegelgänsberger W., 1988, (±)- Parachlorophenylglutamate selectively enhances the depolarizing response to L-homocysteic acid in neocortical neurons of the rat: evicence for a specific uptake system, Brain Res., 443:373–376.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • M. Cuénod
    • 1
  • E. Audinat
    • 1
  • K. Q. Do
    • 1
  • B. H. Gähwiler
    • 1
  • P. Grandes
    • 1
  • P. Herrling
    • 2
  • T. Knöpfel
    • 1
  • H. Perschak
    • 3
  • P. Streit
    • 1
  • F. Vollenweider
    • 1
  • H. G. Wieser
    • 3
  1. 1.Brain Research InstituteZürich UniversitySwitzerland
  2. 2.Sandoz Research InstituteBernSwitzerland
  3. 3.Neurology DepartmentZürich UniversitySwitzerland

Personalised recommendations