Advertisement

Effects of Transient Forebrain Ischemia in Area CA1 of the Gerbil Hippocampus: An in Vitro Study

  • L. Urban
  • K. H. Neill
  • B. J. Crain
  • J. V. Nadler
  • G. G. Somjen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)

Abstract

Lasting loss of function in the CNS after episodes of cerebral ischemia is caused by neuronal cell death (Brierly and Graham, 1984). Among neurons the most vulnerable to transient ischemia are the CA1b pyramidal cells in the hippocampus. The response of these neurons to oxygen deprivation is rather unusual. Following a short period of temporary recovery the signs of degeneration appear gradually, 2–4 days after the ischemic episode (Kirino, 1982, Crain et al., 1988). This phenomen is known as “delayed neuronal death” (Kirino, 1982, Pulsinelli et al., 1982). It is hoped that experimental study of its mechanism may help to devise therapeutical interventions that could arrest the degenerative process. The delayed cell degeneration has been attributed to secondary failure of the circulation by some investigators (Ames et al., 1968) and to a slow, intrinsic neuronal process by others (Simon et al., 1984; Rothman and Olney, 1987). Cells vary greatly in their susceptibility to such damage, and this variability could also be explained either by vascular or by intrinsic cellular differences.

Keywords

Pyramidal Cell Excitatory Amino Acid Mongolian Gerbil Population Spike Transient Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, A., Wright, R. L., Kowada, M., Thurston, J. M., and Majno, G., 1968, Cerebral ischemia: The no-reflow phenomenon, Am. J. Pathol, 52: 437–453.PubMedGoogle Scholar
  2. Armstrong, D. R., Neill, K. H., Crain, B. J., and Nadler, J. V, 1989, Absence of electrographic seizures after transient forebrain ischemia in the Mongolian gerbil, Brain Res, 476: 174–178.PubMedCrossRefGoogle Scholar
  3. Benveniste, H., Drejer, J., Schousböe, A, and Diemer, N.-H., 1984, Elevation of the extracellular concentrations of glutamate and aspartate in the rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis, J. Neurochem, 43: 1369–1374.PubMedCrossRefGoogle Scholar
  4. Boast, C. A., Gerhardt, S. C., and Janak, P., 1987, Systemic AP7 reduces ischemic brain damage in gerbils, in: “Excitatory Amino Acid Transmission,” T. P. Hicks, D. Lodge and H. McLennan, eds., pp. 249–252, Alan R. Liss, New York.Google Scholar
  5. Boast, C. A., Gerhardt, S. C., Pastor, G., Lehmann, J., Etienne P. E., and Liebman, J. M., 1988, The N-methyl-D-aspartate antagonists CGS 19755 and CPP reduce ischemic brain damage in gerbils, Brain Res, 442: 345–348.PubMedCrossRefGoogle Scholar
  6. Brierley, J. B., and Graham, D. I., 1984, Hypoxia and vascular disorders of the central nervous system, in: “Greenfield’s Neuropathology,” 4th edn, J. H. Adams, J.A.N. Corsellis and L. W. Duchen, eds., pp. 125–207, Edward Arnold, London.Google Scholar
  7. Burke, S. P., and Nadler, J. V., 1988, Regulation of glutamate and aspartate release from slices of the hippocampal CAl area: effects of adenosine and baclofen, J. Neurochem, 51: 1541–1551.PubMedCrossRefGoogle Scholar
  8. Choi, D. W., 1987, Ionic dependence of glutamate neurotoxicity in cortical cell culture, J. Neurosci, 7: 369–379.PubMedGoogle Scholar
  9. Choi, D. W., 1988, Glutamate neurotoxicity and diseases of the nervous system, Neuron, 1: 623–634.PubMedCrossRefGoogle Scholar
  10. Collingridge, G. L., Herron, C. E., and Lester, R.A.J., 1988a, Synaptic activation of N-methyl-D-aspartate receptors in the Schaffer collateral-commissural pathway of rat hippocampus, J. Physiol. (Lond.), 399: 283–300.Google Scholar
  11. Collingridge, G. L., Herron, C. E., and Lester, R.A.J., 1988b, Frequency-dependent N-methyl-D–aspartate receptor-mediated synaptic transmission in rat hippocampus. J. Physiol. (Lond.), 399: 301–312.Google Scholar
  12. Corradetti, R., Moneti,G., Moroni, F., Pepeu G., and Wieraszko, A., 1983, Electrical stimulation of the stratum radiatum increases the release and neosynthesis of aspartate, glutamate and -aminobyturic acid in rat hippocampal slices, J. Neurochem, 41: 1518–1525.PubMedCrossRefGoogle Scholar
  13. Crain, B. J., Westerkam, W. D., Harrison, A. H., and Nadler, J. V., 1988, Selective neuronal death after transient forebrain ischemia in the Mongolian gerbil: a silver impregnation study. Neuroscience, 27: 387–402.PubMedCrossRefGoogle Scholar
  14. Fan, P., O’Regan, P. A., and Szerb, J. C., 1988, Effect of low glucose concentration on synaptic transmission in the rat hippocampal slice. Brain Res. Bull, 21: 741–747.PubMedCrossRefGoogle Scholar
  15. Gill, R., Foster, A. C., and Woodruff, G. N., 1987, Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil, J. Neurosci, 7: 3343–3349.PubMedGoogle Scholar
  16. Gill, R., Foster, A. C., and Woodruff, G. N., 1988, MK-801 is neuroprotective in gerbils when administered during the postischemic period, Neuroscience. 25: 847–855.PubMedCrossRefGoogle Scholar
  17. Goldberg, W. J., Kadingo, R. M., and Barrett, J. N., 1986, Effect of ischemia-like conditions on cultured neurons: protection by low Nat, low Cat+ solutions, J. Neurosci, 6: 3144–3151.PubMedGoogle Scholar
  18. Hagberg, H., Lehmann, A., Sandberg, M., Nystrom, B., Jacobson, I., and Hamberger, A, 1985, Ischemia-induced shift of inhibitory and excitatory amino acids from intra-to extracellular compartments, J. Cerebr. Blood Flow Metab, 5: 413–419.CrossRefGoogle Scholar
  19. Johansen, F. F., Jorgensen, M. B., and Diemer, N.-H., 1987, Ischemia-induced delayed neuronal death in the CA-1 hippocampus is dependent on intact glutamatergic innervation, in: “Excitatory Amino Acid Transmission,” T. P. Hicks, D. Lodge and H. McLennan, eds., pp. 245–248, Alan R. Liss, New York.Google Scholar
  20. Kaplan, T. M., Lasner, T. M., Nadler, J. V., and Crain, B. J., 1989, Lesions of excitatory pathways reduce hippocampal cell death after transient forebrain ischemia in the gerbil, (Submitted for publication).Google Scholar
  21. Kirino, T., 1982, Delayed neuronal death in the gerbil hippocampus following ischemia, Brain Res, 239: 57–69.PubMedCrossRefGoogle Scholar
  22. Kirino, T. and Sano, K., 1984, Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus, Acta Neuropath. (Berl.), 62: 209–218.CrossRefGoogle Scholar
  23. Lee, K., Tetzlaff, W., and Kreutzberg, G., 1986, Rapid down regulation of hippocampal adenosine receptors following brief anoxia, Brain Res, 380: 155–158.PubMedCrossRefGoogle Scholar
  24. Mayer, M. L., MacDermott, A. B., Westbrook, G. L., Smith, S. J., and Barker, J. L., 1987, Agonistand voltage-gated calcium entry in cultured mouse spinal cord neurons under voltage clamp measured using arsenazo III., J. Neurosci, 7: 3230–3244.PubMedGoogle Scholar
  25. Meldrum, B., 1985, Excitatory amino acids and anoxic/ischemic brain damage, Trends. Neurosci, 8: 47–48.Google Scholar
  26. Murphy, S. N., Thayer, S. A., and Miller, R. J., 1987, The effect of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro, J. Neurosci, 7: 4145–4158.PubMedGoogle Scholar
  27. Nadler, J. V., Vaca, K. W.,White, W. F., Lynch, G. S., and Cotman, C. W., 1976, Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents, Natures 260: 538–540.Google Scholar
  28. Nadler, J. V., Evenson, D. A., and Cuthbertson, G. J., 1981, Comparative toxicity of kainic acid and other acidic amino acids toward rat hippocampal neurons, Neuroscience, 6: 2505–2517.PubMedCrossRefGoogle Scholar
  29. Olney, J. W., 1983, Excitotoxins: an overview, in “Excitotoxins,” K. Fuxe, P. Roberts and R. Schwarcz, eds., pp. 82–96, MacMillan Press, London.Google Scholar
  30. Onodera, H., Sato, G., and Kogure, K., 1986, Lesions to Schaffer collaterals prevent ischemic death of pyramidal cells, Neurosci. Lett, 68: 169–174.PubMedCrossRefGoogle Scholar
  31. Petito, C. K. and Pulsinelli, W. A., 1984, Delayed neuronal recovery and neuronal death in rat hippocampus following severe cerebral ischemia: possible relationship to abnormalities in neuronal processes, J. Cerebr. Blood Flow Metab, 4: 194–205.CrossRefGoogle Scholar
  32. Pulsinelli, W. A., Brierley, J. B., and Plum, F., 1982, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann. Neurol, 11: 491–498.PubMedCrossRefGoogle Scholar
  33. Rothman, S. M. and Olney, J. W., 1986, Glutamate and the pathophysiology of hypoxic-ischemic brain damage, Ann. Neurol, 19: 105–111.PubMedCrossRefGoogle Scholar
  34. Rothman, S. M., and Olney, J. W., 1987, Excitotoxicity and the NMDA receptor, TINS, 10: 299–302.Google Scholar
  35. Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S., 1984, Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in brain, Science, 226: 850–852.PubMedCrossRefGoogle Scholar
  36. Urban, L., Neill, K., Crain B. J., Nadler J. V., and Somjen, G. G., in press, Postischemic synaptic physiology in area area CA1 of the gerbil hippocampus studied in vitro, J. Neurosci.Google Scholar
  37. Vicedomini, J. P. and Nadler, J. V., 1987, A model of status epilepticus based on electrical stimulation of hippocampal afferent pathways, Exp. Neurol, 96: 681–691.PubMedCrossRefGoogle Scholar
  38. Wieloch, T., Lindvall, O., Blomqvist, P., and Gage, F. H., 1985, Evidence for amelioration of ischemic neuronal damage in the hippocampal formation by lesions of the perforant path, Neurol. Res, 7: 24–26.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • L. Urban
    • 1
  • K. H. Neill
    • 1
  • B. J. Crain
    • 1
  • J. V. Nadler
    • 1
  • G. G. Somjen
    • 1
  1. 1.Departments of Cell Biology, Pathology, Neurobiology and PharmacologyDuke Medical CenterDurhamUSA

Personalised recommendations