Modulation of ATP Sensitive K+ Channels: A Novel Strategy to Reduce the Deleterious Effects of Anoxia

  • Y. Ben-Ari
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)


Present strategies to reduce the deleterious effects of anoxia are essentially centered on the use of agents that block the effect of excitotoxic release of glutamate. Since the anoxie lesion is thought to result from excessive Ca++ influx at least partly through the NMDA receptor channel complex — (see Choi 1988) most present attempts have been made on the use of NMDA antagonists. These strategies include 1) blockers of NMDA receptor channel complex, and 2) blockers of the glycine allosteric site of NMDA receptors in order to reduce the action of glutamate on these receptors.


Input Resistance Kynurenic Acid Transient Cerebral Ischemia Electrogenic Pump Anoxic Depolarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashcroft, F.M. (1988) Adenosine 5’-triphosphate sensitive potassium channels. Annu. Rev. Neurosci 11: 97–188.PubMedCrossRefGoogle Scholar
  2. Ashford, M.L.J., Sturgess, N.C., Trout, N.J. Gardner, N.J., and Hales, C.N. (1988) Adenosine-5’triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflügers Arch 412: 297–304.PubMedCrossRefGoogle Scholar
  3. Ben-Ari, Y. (1989) Galanin and glibenclamide modulate the anoxic release of glutamate in rat CA3 hippocampal neurons. Eur. J. Neurosci. In press.Google Scholar
  4. Ben -Ari Y. and Gho, M. (1988) Long lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid. J. Physiol. (Lond.) 404: 365–384.Google Scholar
  5. Ben-Ari, Y. and Cherubini, E. (1988) Brief anoxic episodes induce long lasting changes in synaptic properties of rat CA3 hippocampal neurons. Neurosci. Lett 90: 273–278.PubMedCrossRefGoogle Scholar
  6. Ben-Ari, Y. and Lazdunski, M. (1989) Galanin protects hippocampal neurons from the functional effects of anoxia. Eur. J. Pharmacol 1989, 165, p. 331–332.CrossRefGoogle Scholar
  7. Ben-Ari, Y., Krnjevic, K. and Crepel, V. (1990) Activators of ATP sensitive K+ channels reduce anoxic depolarization in CA3 hippocampal neurons. Neurosci. in press.Google Scholar
  8. Benveniste, H., Drejer, J., Schousboe, N., and Diemer, N.H. (1984) Elevation of the extracellular concentration of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdial. J. Neurochem 43: 1369–1374.PubMedCrossRefGoogle Scholar
  9. Cherubini, E., Ben-Ari, Y. and Krnjevic, K. (1989) Anoxia produces small changes in synaptic transmission membrane potential and input resistance in immature rat hippocampus. J.N.P.Google Scholar
  10. Choi, D.W. (1989) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. TINS 11: 465–469.Google Scholar
  11. Cook, D.L. and Hales, C.N. (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311: 271–273.PubMedCrossRefGoogle Scholar
  12. De Weille, J., Schmid-Antomarchi, H., Fosset, M., and Lazdunski, M. (1988a) ATP sensitive K+ channels that are blocked by hypoglycemia-inducing sulfonylureas in insuline-secreting cells are activated by galanin, a hyperglycemia-inducing hormone. Proc. Natl. Acad. Sci. USA 85: 1312–1316.PubMedCrossRefGoogle Scholar
  13. De Weille, J., Schmidt-Antomarchi, H., Fosset, M. and Lazdunski, M. (1988b) Regulation of ATP-sensitive K+ channels in insulinama role of cAMP. Proc. Natl. Acad. Sci 86, 2971–2976.CrossRefGoogle Scholar
  14. Fujiwara, N., Higashi, H. Shimoji, K., and Yoshimura, M. (1987) Effects of hypoxia on rat hippocampal neurones in vitro. J. Physiol. (Lond.) 384: 131–151.Google Scholar
  15. Hansen, A.J., Hounsgaard, J., and Jahnsen, H. (1982) Anoxia increases potassium conductance in hippocampal nerve cells: Acta Physiol. Scand. 115: 301–310.PubMedCrossRefGoogle Scholar
  16. Kass, I. and Lipton, P. (1982) Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice. J. Physiol. (Lond.) 332: 459–472.Google Scholar
  17. Kirin, T. (1982) delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239: 57–69.Google Scholar
  18. Konopka, L.M., McKeon, T.W., and Parsons, R.L. (1989) Galanin-induced hyperpolarization and decreased membrane excitability of neurones in mudpuppy cardiac ganglia. J. Physiol 410: 107–122.PubMedGoogle Scholar
  19. Krnjevic, K. (1975) Coupling of neuronal metabolism and electrical activity. In: Ingvar, D. H. and Lassen, N.A. (cds) Brain Work pp 65–78. Munksgaard, Copenhagen.Google Scholar
  20. Krnjevic, K. and LeBlond, K. (1987) Anoxia reversibly suppresses neuronal calcium currents in rat hippocampal slices. Can. J. Physiol. Pharmacol 65: 2157–2161.PubMedCrossRefGoogle Scholar
  21. Krnjevic, K. and LeBlond, J. (1988) Are there hippocampal ATP-sensitive K channels that are activated by anoxia? Eur. J. Physiol 411: R145.Google Scholar
  22. Krnjevic, K., E.Cherubini, Y. Ben-Ari (1989) Anoxia in slow inward currents of immature hippocampal neurons. J. Neurophysiol 1989. 62: 896–906.Google Scholar
  23. Melander, T., Hökfelt, T., and Rökacus, A. (1986) Distribution of galanin-like immunoreactivity in the rat central nervous system. J. Comp. Neurol 248: 475–517.PubMedCrossRefGoogle Scholar
  24. Mourre, C., Ben-Ari, Y., Bernardi, H., Fosset, M., and Lazdunski, M. (1989) Antidiabetic sulfonylureas: localization of binding sites in the brain and effects on the hyperpolarization induced by anoxia in hippocampal slices. Brain Res. 486: 159–164.PubMedCrossRefGoogle Scholar
  25. Noma, A. (1983) ATP regulated K+ channels in cardiac muscle. Nature 305: 147–148.PubMedCrossRefGoogle Scholar
  26. Pulsinelli, W. A., Brierley, J. B. and Plum, F. (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann. Neurol 11: 491–498.PubMedCrossRefGoogle Scholar
  27. Rökacus, A. (1987) Galanin: a newly isolated biologically active neuropeptide. TINS 10: 158–164.Google Scholar
  28. Schmid-Antomarchi, H., De Wzille, J., Fosset, M., and Lazdunski, M. (1987) The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K2 channel in insulin-secreting cells. J. Biol. Chem 262: 15840–15844.PubMedGoogle Scholar
  29. Smith, M.L., Auer, R. N., and Siesjö, B. K. (1984) The density and distribution of ischemic injury in the rat following two or ten minutes of forebrain ischemia. Acta Neuropathol. (Berlin) 64: 319–332.Google Scholar
  30. Stanfield, P. R. (1987) Nucleotides such as ATP may control the activity of ion channels. TINS 10: 335–339.Google Scholar
  31. Sturgess, N. C., Ashford, M. L. J., Cook, D. L., and Hales C.N. (1985) The sulfonylurea receptor may be an ATP-sensitive potassium channel. Lancet 2: 474–475.PubMedCrossRefGoogle Scholar
  32. Tamura, K., Palmer, J. M., Winkelmann, C. K., and Wood, J. D. (1988) Mechanismof action of galanin on myenteric neurons. J. Neurochem 60: 966–979.Google Scholar
  33. Trube, G. and Hescheler, J. (1984) Inward-rectifying channels in isolated patches of the heart cell and membrane: ATP-dependence and comparison with cell-attached patches. Pflügers Arch. 401: 178–184.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Y. Ben-Ari
    • 1
  1. 1.INSERM Unité 29ParisFrance

Personalised recommendations