NMDA Receptor Plasticity in the Kindling Model

  • J. O. McNamara
  • G. Yeh
  • D. W. Bonhaus
  • M. Okazaki
  • J. V. Nadler
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)


The N-methyl-D-aspartate (NMDA) subtype of excitatory amino acid receptor serves a critical role in the development and stabilization of synapses in the developing nervous system (Cline et al., 1987) and in plasticity of the adult nervous system, particularly with respect to formation of some forms of learning and memory (Morris et al., 1986; Mondadori et al., 1989) Its role in these processes almost certainly derives from two unique features of this ionotropic neurotransmitter receptor: 1) its regulation by magnesium which results in its sensitivity to membrane voltage, thereby endowing it with associative properties (MacDonald et al., 1982; Flatman et al., 1983; Nowak et al., 1984; Mayer et al., 1984); and 2) its permeability to calcium (MacDermott et al., 1986), a second messenger capable of controlling a host of calcium sensitive enzymes.


NMDA Receptor Excitatory Amino Acid NMDA Receptor Antagonist Dentate Granule Cell Muscarinic Cholinergic Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balazs, R., Jorgensen, O.S., and Hack, N., 1988, N-methyl-D-Aspartate promotes the survival of cerebellar granule cells in culture, Neuroscience 27: 437.PubMedCrossRefGoogle Scholar
  2. Bode-Greul, K. and Singer, W., 1989, The development of N-methyl-D-aspartate receptors in cat visual cortex, Dey. Brain Res. 46: 197.CrossRefGoogle Scholar
  3. Bonhaus, D.W., Yeh, G.C., Skaryak, L. and McNamara, J.O., Glycine regulation of the NMDA receptor-coupled ion channel in hippocampal membranes, Mol.Pharm, in press.Google Scholar
  4. Brewer, G.J. and Cotman, C., 1988, NMDA receptor regulation of neuronal morphology in cultured hippocampal neurons, Neurosci. Lett. 99: 268.Google Scholar
  5. Byrne, M.C., Gottlieb, R. and McNamara, J.O., 1980, Amygdala kindling induces muscarinic cholinergic receptor declines in a highly specific distribution within the limbic system, Exp. Neurol. 69: 85.Google Scholar
  6. Cline, H., Debski, E. and Constantine-Paton, M., 1987, NMDA receptor antagonist desegregates eye specific stripes, Proc. Natl. Acad. Sci. U.S.A. 84: 4342.CrossRefGoogle Scholar
  7. Crain, B.J., Chang, K.J., and McNamara, J.O., 1987, An in vitro autoradiographic analysis of mu and delta opioid binding in the hippocampal formation of kindled rats, Brain Res. 412: 311.CrossRefGoogle Scholar
  8. Dasheiff, R.M. and McNamara, J.O., 1982, Electrolytic entorhinal lesions cause seizures, Brain Res. 231: 444.PubMedCrossRefGoogle Scholar
  9. Flatman, J.A., Schwindt, P.C., Crill, W.E., Strafstrom, C.E., 1983, Multiple actions of N-methylD-aspartate on cat neocortical neurons in vitro, Brain Res. 266: 169.PubMedCrossRefGoogle Scholar
  10. Goddard, G.V., McIntyre, D.C., Leech, C.K., 1969, A permanent change in brain function resulting from daily electrical stimulation, Exp. Neurol. 25: 295.Google Scholar
  11. Honore, T. and Drejer, J., 1988, Binding characteristics of Non-NMDA receptors, in “Excitatory Amino Acids in Health and Disease,” D. Lodge, ed., Wiley, London, pp. 91–106.Google Scholar
  12. Johnson, J.W., Ascher, P., 1987, Glycine potentiates the NMDA response in cultured mouse brain neurons, Nature 325: 529.PubMedCrossRefGoogle Scholar
  13. Kleckner, N.W., Dingledine, R., 1988, Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes, Science 241: 835.PubMedCrossRefGoogle Scholar
  14. Mayer, M.L., Westbrook, G.L., Gutherie, P.B., 1984, Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones, Nature 309: 261.PubMedCrossRefGoogle Scholar
  15. MacDermott, A.B., Mayer, M.L., Westbrook, G.L., Smith, S.J;, Barker, J.L., NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones, Nature 321: 519.Google Scholar
  16. MacDonald, J.F., Porietis, A.V., Wojtowicz, J.M., 1982, L-aspartic acid induces a region of negative slope conductance in the current voltage relationship of cultured spinal cord neurons, Brain Res. 237: 248.PubMedCrossRefGoogle Scholar
  17. McNamara, J.O., 1978, Muscarinic cholinergic receptors participate in the kindling model of epilepsy, Brain Res. 154: 415.PubMedCrossRefGoogle Scholar
  18. McNamara, J.O., Bonhaus, D.W., Nadler, J.V. and Yeh, G.C., N-methyl-D-aspartate (NMDA) receptors and the kindling model, in “Kindling 4,” J. Wada, ed., Plenum Pub. Co., New York, in press.Google Scholar
  19. McNamara, J.O., Peper, A.M., Patrone, V., 1980, Repeated seizures induce long term elevation of hippocampal benzodiazepine receptors, Proc. Natl. Acad.Sci., U.S.A. 77: 3029.CrossRefGoogle Scholar
  20. McNamara, J.O., Russell, R.D., Rigsbee, L.C., and Bonhaus, D.W., 1988, Anticonvulsant and antiepileptogenic actions of MK-801 in the kindling and electroshock models, Neuropharmacology 27: 563.PubMedCrossRefGoogle Scholar
  21. Mody, I., Stanton, P.K. and Heinemann, U., 1988, Activation of N-methyl-D-aspartate receptors parallels changes in cellular and synaptic properties of dentate gyrus granule cells after kindling, J.Neurophysiol. 59: 1033.PubMedGoogle Scholar
  22. Monaghan, D.T., Olverman, H.J., Nguyen, L., Watkins, J.C. and Cotman, C.W., 1988, Two classes of N-methyl-D-aspartate recognition sites: differential distribution and differential regulation by glycine, Proc. Natl. Acad. Sci. U.S.A. 85: 9836.Google Scholar
  23. Mondadori, C., Weiskrantz, L., Buerki, H., Petschke, F. and Fagg, G.E., 1989, NMDA receptor antagonists can enhance or impair learning performance in animals, Exp. Brain Res., 75: 449.PubMedGoogle Scholar
  24. Morris, R.G.M., Anderson, E., Lynch, G.S. and Baudry, M., 1986, Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, Nature, 319: 774.PubMedCrossRefGoogle Scholar
  25. Morrisett, R.A., Chow, C., Nadler, J.V. and McNamara, J.O., Biochemical evidence for enhanced sensitivity to N-methyl-D-aspartate in the hippocampal formation of kindled rats, Brain Res, in press.Google Scholar
  26. Morrisett, R.A., Chow, C., Sakaguchi, T., Shin, C., and McNamara, J.O., Inhibition of muscariniccoupled phosphoinositide hydrolysis by N-methyl-D-aspartate is dependent upon depolarization via channel activation, submitted for publication.Google Scholar
  27. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., Prochiantz, A., 1984, Magnesium gates glutamate-activated channels in mouse central neurons, Nature 307: 462.PubMedCrossRefGoogle Scholar
  28. Okazaki, M.M., McNamara, J.O., and Nadler, J.V., 1989, N-methyl-D-aspartate receptor autoradiography in rat brain after angular bundle kindling, Brain Res. 482: 359.PubMedCrossRefGoogle Scholar
  29. Olsen, R.W., Bureau, M., Khrestchatisky, M., MacLennan, A.J., Ciang, M.Y., Tobin, A.J., Xu, W., Jackson, M., Sternini, C., and Brecha, N. Isolation of pharmacologically distinct GABAbenzodiazepine receptors by protein chemistry and molecular cloning, in GABA and Benzodiazepine Receptor Subtypes: from Molecular Biology to Clinical Practice, Raven Press, New York, in press.Google Scholar
  30. Olsen, R.W. and Snowman, A.M., 1983, [3H]Bicuculline methochloride binding to low-affinity gamma-aminobutyric acid receptor sites, J.Neurochem. 41: 1653.Google Scholar
  31. Pearce, I., Cambray-Deakin, M., and Burgoyne, R., 1987, Glutamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells, FEBS Lett. 223: 143.PubMedCrossRefGoogle Scholar
  32. Peterson, D.W., Collins, J.F. and Bradford, H.F., 1983, The kindled amygdala model of epilepsy: anticonvulsant action of amino acid antagonists, Brain Res. 275: 169.PubMedCrossRefGoogle Scholar
  33. Pritchett, D.B., Sontheimer, H., Gorman, C.M., Kettenmann, H., Seeburg, P.H., Schofield, P.R., 1988, Transient expression shows ligand gating and allosteric potentiation of GABAA receptor subunits, Science 242: 1306.PubMedCrossRefGoogle Scholar
  34. Purves, D., Snider, W.D., and Voyvodic, J.T., Trophic regulation of nerve cell morphology and innervation in the autonomic nervous system, Nature 336: 123.Google Scholar
  35. Rondouin, G., Involvement of excitatory amino acids in the mechanisms of kindling, in “Kindling 4,” J. Wada, ed., Plenum Press, New York, in press.Google Scholar
  36. Savage, D.D.S., Dasheiff, R., and McNamara, J.O., 1983, Kindled seizure induced reduction of muscarinic cholinergic receptors in rat hippocampal formation: evidence for localization to dentate granule cells, J. Comp. Neurol. 221: 106.Google Scholar
  37. Savage, D.D.S., Werling, L.L., Nadler, J.V., and McNamara, J.O., 1984a, Selective and reversible increase in the number of quisqualate-sensitive glutamate binding sites on hippocampal synaptic membranes after angular bundle kindling, Brain Res. 307: 332.PubMedCrossRefGoogle Scholar
  38. Savage, D.D.S., Nadler, J.V., and McNamara, J.O., 1984b, Reduced kainic acid binding in rat hippocampal formation after limbic kindling, Brain Res. 323: 128.PubMedCrossRefGoogle Scholar
  39. Schofield, P.R., Darlison, M.G., Fujita, N., Burt, D.R., Stephenson, F.A., Rodriguez, H., Rhee, L.M., Ramachandran, J., Reale, V., Glencorse, T.A., Seeburg, P.H., and Barnard E.A., 1987, Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family, Nature 328: 221.PubMedCrossRefGoogle Scholar
  40. Shin, C., Pedersen, H.B., and McNamara, J.O., 1985, Gamma-aminobutyric acid and benzodiazepine receptors in the kindling model of epilepsy: a quantitative radiohistochemical study, J.Neurosci. 5: 2696.PubMedGoogle Scholar
  41. Stelzer, A., Slater, N.T. and ten Bruggencate, G., 1987, Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy, Nature 326: 698.PubMedCrossRefGoogle Scholar
  42. Sutula, T., Xiao-Xian, H., Cavazos, J. and Scott, G., 1988, Synaptic reorganization in the hippocampus induced by abnormal functional activity, Science 239: 1147.PubMedCrossRefGoogle Scholar
  43. Szekely, A.M., Barbaccia, M.L., Alho, H. and Costa, E., 1989, In primary cultures of cerebellar granule cells the activation of N-methyl-D-aspartate-sensitive glutamate receptors induces c-fos mRNA expression, Mol. Pharm. 35: 401.Google Scholar
  44. Tremblay, E., Roisin, M., Represa, A., Charriaut-Marlangue, C., and Ben-Ari, Y., 1989, Transient increased density of NMDA binding sites in the developing rat hippocampus, Brain Res. 461: 393.CrossRefGoogle Scholar
  45. Tsumoto, T., Hagihara, K., Sato, H., and Hata, Y., 1987, NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats, Nature 327: 513.PubMedCrossRefGoogle Scholar
  46. Valdes, F., Dasheiff, R.M., Birmingham, F., Crutcher, K.A., and McNamara, J.O., 1982, Benzodiazepine receptor increases following repeated seizures: evidence for localization to dentate granule cells, Proc. Natl. Acad. Sci. U.S.A. 79: 193.CrossRefGoogle Scholar
  47. Yeh, G.C., Bonhaus, D.W., Nadler, J.V., and McNamara, J.O., NMDA receptor plasticity in kindling: quantitative and qualitative alterations in the NMDA receptor/channel complex, Proc. Natl. Acad. Sci. U.S.A, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. O. McNamara
    • 1
    • 2
    • 3
  • G. Yeh
    • 2
  • D. W. Bonhaus
    • 1
    • 3
  • M. Okazaki
    • 2
  • J. V. Nadler
    • 2
  1. 1.Department of Medicine (Neurology)Duke University Medical CenterDurhamUSA
  2. 2.Department of PharmacologyDuke University Medical CenterDurhamUSA
  3. 3.Veterans Administration Medical CenterDurhamUSA

Personalised recommendations