Advertisement

Changes in Synaptic Transmission in the Kindled Hippocampus

  • U. Heinemann
  • H. Clusmann
  • J. Dreier
  • J. Stabel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 268)

Abstract

The entorhinal cortex- hippocampus complex has particular features not only with respect to synaptic plasticity but also with respect to the readiness to develop progressive epilepsy. It might well be that this particular feature depends on the impressive plastic properties of the involved structures. A model for the progression of epilepsy is the kindling epilepsy. It is caused by stimuli (1 s, 50 Hz) of a type which also elicits long term potentiation [1]. Such stimulation induces generalized seizures when the stimuli are repeated in daily intervals [4]. The number of stimulations required to induce the kindling epilepsy is dependent on structure and varies between roughly 20 and more than 100.

Keywords

NMDA Receptor Dentate Gyrus Entorhinal Cortex Epileptiform Activity Perforant Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bliss, T.V.P. and Lomo, T., Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol 232 (1973) 331–356.PubMedGoogle Scholar
  2. 2.
    Collingridge, G.L. and Bliss, T.V.P., NMDA receptors–their role in long-term potentiation, Trends in Neuroscience 10 (1987) 288–293.CrossRefGoogle Scholar
  3. 3.
    Cotman, C.W. and Monaghan, D.T., Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity, Ann. Rev. Neurosci 11 (1988) 61–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Goddard, G.V., McIntyre, D.C. and Leech, C.K., A permanent change in brain function resulting from daily electical stimulation, Exp. Neurol 25 (1969) 295–330.PubMedCrossRefGoogle Scholar
  5. 5.
    Hablitz, J.J. and Thalmann, R.H., Conductance changes underlying a late synaptic hyperpola- rization in hippocampal CA3 neurons, J. Neurophysiol 58 (1987) 160–179.PubMedGoogle Scholar
  6. 6.
    Hamon, B. and Heinemann, U., Effects of GABA and bicuculline on N-methyl-D-aspartate-and quisqualate-induced reductions in extracellular free calcium in area CAl of the hippocampal slice, Exp. Brain Res 64 (1986) 27–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Harris, E.W. and Cotman, C.W., Effects of synaptic antagonists on perforant path paired-pulse plasticity: Differentiation of pre-and post-synaptic antagonism, Brain Res. 334 (1985) 348–353.PubMedCrossRefGoogle Scholar
  8. 8.
    Heinemann, U., Basic mechanisms of the epilepsies. In A.M. Halliday, S.R. Butler and R. Paul (Eds.), A textbook of clinical neurophysiology, John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1987, pp. 497–534.Google Scholar
  9. 9.
    Heinemann, U., Hamon, B., Konnerth, A. and Wadman, W.J., Stimulus-dependent synaptic plasticity in area CAl of the in vitro hippocampal slice of rats, Exp. Brain Res. 14 (1986) 291–299.Google Scholar
  10. 9.
    Heinemann, U., Hamon, B., Konnerth, A. and Wadman, W.J., Stimulus-dependent synaptic plasticity in area CAl of the in vitro hippocampal slice of rats, Exp. Brain Res. 14 (1986) 291–299.Google Scholar
  11. 11.
    Heinemann, U., Konnerth, A., Pumain, R. and Wadman, W.J., Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue. In A.V. Delgado-Escueta, A.A. Ward, D.M. Woodbury and R.J. Porter (Eds.), Advances in neurology / Basic mechanisms of the epilepsies, Raven Press, New York, 1986, pp. 641–661.Google Scholar
  12. 12.
    Jones, R.S.G. and Heinemann, U., Abolition of the orthodromically evoked IPSP of CAl pyramidal cells before the EPSP during washout of calcium from hippocampal slices, Exp. Brain Res 65 (1987) 676–680.PubMedGoogle Scholar
  13. 13.
    Jones, R.S.G. and Heinemann, U., Synaptic and intrinsic responses of medial entorhinal cortical cells in normal and magnesium-free medium in vitro, J. Neurophysiol 59 (1988) 1476–1497.PubMedGoogle Scholar
  14. 14.
    Kamphuis, W., Huisman, E., Wadman, W.J. and Lopes da Silva, F.H., Decrease in GABA immunoreactivity and alteration of GABA metabolism after kindling in the rat hippocampus, Exp. Brain Res 74 (1989) 375–386.PubMedCrossRefGoogle Scholar
  15. 15.
    Kamphuis, W., Lopes da Silva, F.H. and Wadman, W.J., Changes in local evoked potentials in the rat hippocampus (CA1) during kindling epileptogenesis, Brain Res. 440 (1988) 205–215.PubMedCrossRefGoogle Scholar
  16. 16.
    Lambert, J.D.C., Jones, R.S.G., Andreasen, M., Jensen, M.S. and Heinemann, U., The role of excitatory amino acids in synaptic transmission in the hippocampus, Comp. Biochem. Physiol. [A] 93A (1989) 195–201.CrossRefGoogle Scholar
  17. 17.
    McNamara, J.O., Bonhaus, D.W., Shin, C., Crain, B.J., Gellman, R.L. and Giacchino, J.L., The kindling model of epilepsy: a critical review, Crit Rev. Clin. Neurobiol 1 (1985) 341–391.Google Scholar
  18. 18.
    McNaughton, B.L. and Barnes, C.A., Physiological identification and analysis of dentate granule cell responses to stimulation of the medial and lateral perforant pathways in the rat, J. comp. Neurol 175 (1977) 439–454.PubMedCrossRefGoogle Scholar
  19. 19.
    Misgeld, U., Klee, M.R. and Zeise, M.L., Blockade of hippocampal GABA-ergic inhibition by baclofen. In E.-J. Speckmann, H. Schulze and J. Walden (Eds.), Epilepsy and Calcium, Urban & Schwarzenberg, Muenchen,Wien,Baltimore, 1986, pp. 17–33.Google Scholar
  20. 20.
    Mody, I. and Heinemann, U., NMDA receptors of dentate gyrus granule cells participate in synaptic transmission following kindling, Nature (London) 326 (198. 7 ) 701–704.Google Scholar
  21. 21.
    Mody, I., Lambert, J.D.C. and Heinemann, U., Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices, J. Neurophysiol 57 (1987) 869–888.PubMedGoogle Scholar
  22. 22.
    Mody, I., Salter, M.W. and MacDonald, J.F., Requirement of NMDA receptor/channels for intracellular high energy phosphates and the extent of intraneuronal calcium buffering in cultured mouse hippocampal neurons, Neurosci. Lett 93 (1988) 73–78.PubMedCrossRefGoogle Scholar
  23. 23.
    Mody, I., Stanton, P.K. and Heinemann, U., Activation of N-methyl-D-aspartate receptors parallels changes in cellular and synaptic properties of dentate gyrus granule cells after kindling, J. Neurophysiol 59 (1988) 1033–1054.PubMedGoogle Scholar
  24. 24.
    Morris, B.J., Feasey, K.J., ten Bruggencate, G., Herz, A. and Höllt, V., Electrical stimulation in vivo increases the expression of prodynorphin mRNA in rat hippocampal granule cells, Proc. Nat. Acad. Sci 85 (1988) 3226–3230.PubMedCrossRefGoogle Scholar
  25. 25.
    Oliver, M.W. and Miller, J.J., Alterations of inhibitory processes in the dentate gyrus following kindling-induced epilepsy, Exp. Brain Res 57 (1985) 443–447.PubMedCrossRefGoogle Scholar
  26. 25.
    Oliver, M.W. and Miller, J.J., Alterations of inhibitory processes in the dentate gyrus following kindling-induced epilepsy, Exp. Brain Res 57 (1985) 443–447.PubMedCrossRefGoogle Scholar
  27. 27.
    Rausche, G., Sarvey, J.M. and Heinemann, U., Lowering extracellular calcium reverses paired pulse habituation into facilitation in dentate granule cells and removes a late IPSP, Neurosci. Lett 88 (1988) 275–280.PubMedCrossRefGoogle Scholar
  28. 28.
    Represa, A., Le Gall La Salle, G. and Ben-Ari, Y., Hippocampal plasticity in the kindling model of epilepsy in rats, Neurosci. Lett 99 (1989) 345–350.PubMedCrossRefGoogle Scholar
  29. 28.
    Represa, A., Le Gall La Salle, G. and Ben-Ari, Y., Hippocampal plasticity in the kindling model of epilepsy in rats, Neurosci. Lett 99 (1989) 345–350.PubMedCrossRefGoogle Scholar
  30. 30.
    Stanton, P.K., Mody, I. and Heinemann, U., Mechanisms of action of norepinephrine in dentate gyrus granule cells: implications for long-term neuronal plasticity, Exp. Brain Res. submitted.Google Scholar
  31. 31.
    Stanton, P.K., Mody, I. and Heinemann, U., A role for N-methyl-D-aspartate receptors in norepinephrine-induced long-lasting potentiation in the dentate gyrus, Exp. Brain Res 77 (1989) 517–530.PubMedCrossRefGoogle Scholar
  32. 32.
    Stanton, P.K., Mody, I. and Heinemann, U., Downregulation of noradrenaline receptors during kindling, Brain Res. 476 (1989) 367–372.PubMedCrossRefGoogle Scholar
  33. 33.
    Wadman, W.J. and Heinemann, U., Laminar profiles of (K+)o and (Calf-)0 in region CAl of the hippocampus of kindled rats. In M.et al. Kessler (Ed.), Ion Measurements in Physiology and Medicine, Springer-Verlag, Berlin, Heidelberg, 1985, pp. 221–228.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • U. Heinemann
    • 1
  • H. Clusmann
    • 1
  • J. Dreier
    • 1
  • J. Stabel
    • 1
  1. 1.Inst. NeurophysiologyUniversity CologneKöln 41Germany

Personalised recommendations